Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10545
標題: 以光輔助電化學技術研製高效率氮化銦鎵發光二極體
Development of High Efficiency InGaN Light Emitting Diodes Using a Photoelectrochemical Technology
作者: Yang, Chung-Chieh
楊仲傑
關鍵字: InGaN;氮化銦鎵;Photoelectrochemical;Light Emitting Diode;光輔助電化學;發光二極體
出版社: 材料科學與工程學系所
引用: [1] S. Nakamura and G. Fasol, The Blue Laser Diode. New York:Springer, 1997. [2] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN” Appl. Phys. Lett. vol. 62, pp. 1786–1787, 1993. [3] E. S. Fred, “Light-Emitting Diodes” Cambridge, U.K.: Cambridge Univ.Press, 2003. [4] R. J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, “Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors” Appl. Phys. Lett. Vol. 88, pp. 101104, 2006. [5] J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao“Enhanced Output Power of GaN-Based LEDs With Nano-Patterned Sapphire Substrates” IEEE Photon. Technol. Lett. vol. 20, no. 13, pp. 1193–1195, 2008. [6] C. F. Shen, S. J. Chang, T. K. Ko, C. T. Kuo, S. C. Shei, W. S. Chen, C. T. Lee, C. S. Chang, and Y. Z. Chiou “Nitride-Based Light Emitting Diodes With Textured Sidewalls and Pillar Waveguides” IEEE Photon. Technol. Lett. vol. 18, no. 23, pp. 2517–2519, 2006. [7] C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo “Nitride-Based LEDs With Textured Side Walls” IEEE Photon. Technol. Lett. vol. 16, no. 3, pp. 750–752, 2004. [8] Hyunsoo Kim, Jaehee Cho, Jeong Wook Lee, Sukho Yoon, Hyungkun Kim, Cheolsoo Sone, and Yongjo Park, Tae-Yeon Seong “Enhanced light extraction of GaN-based light-emitting diodes by using textured n-type GaN layers” Appl. Phys. Lett. vol. 90, pp. 161110, 2007 [9] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, and M. G. Craford, J. R. Wendt and J. A. Simmons, M. M. Sigalas “InGaNOGaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures” Appl. Phys. Lett. vol. 84, pp. 3885, 2004. [10] Ja-Yeon Kim, Min-Ki Kwon, Ki-Sung Lee, and Seong-Ju Park, Sang Hoon Kim and Ki-Dong Lee “Enhanced light extraction from GaN-based green light-emitting diode with photonic crysta” Appl. Phys. Lett. vol. 91, pp. 181109, 2007. [11] Aurélien David, Brendan Moran, Kelly McGroddy, Elison Matioli, Evelyn L. Hu, Steven P. DenBaars, Shuji Nakamura, and Claude Weisbuch “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth” Appl. Phys. Lett. vol. 92, pp. 113514, 2008. [12] S. J. Wang, K. M. Uang, S. L. Chen, Y. C. Yang, S. C. Chang, T. M. Chen, and C. H. Chen, “Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes” Appl. Phys. Lett. vol. 87, pp. 011111, 2005. [13] R. W. Haisty, “Photoetching and Plating of Gallium Arsenide” Journal of the Electrochemical Society, vol. 108, pp. 790-794, 1961. [14] R. Khare, E. L. Hu, J. J. Brown, and M. A. Melendes, “Micromachining in III–V semiconductors using wet photoelectrochemical etching” Journal of Vacuum Science & Technology B, vol. 11, pp. 2497-2501, 1993. [15] M. S. Minsky, M. White, and E. L. Hu, “Room-temperature photoenhanced wet etching of GaN” Appl. Phys. Lett. vol. 68, pp. 1531-1533, 1996. [16] C. Youtsey, I. Adesida, and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN” Appl. Phys. Lett. vol. 71, pp. 2151, 1997. [17] C. Youtsey, L. T. Romano, and I. Adesida, “Smooth n-type GaN surfaces by photoenhanced wet etching” Appl. Phys. Lett. vol. 73, pp. 797, 1998. [18] J. E. Borton, C. Cai, M. I. Nathan, P. Chow, J. M. Van Hove, A. Wowchak, and H. Morkoc, “Bias-assisted photoelectrochemical etching of p-GaN at 300 K” Appl. Phys. Lett. vol. 77, pp. 1227, 2000. [19] H. M. Ng, N. G. Weimann, and A. Chowdhury, “GaN nanotip pyramids formed by anisotropic etching” J. Appl. Phys. vol. 94, pp. 650, 2003. [20] Y. Gao, M. D. Craven, J. S. Speck, S. P. DenBaars, and E. L. Hu, “Dislocation- and crystallographic-dependent photoelectrochemical wet etching of gallium nitride” Appl. Phys. Lett. vol. 84, pp. 3322, 2004. [21] L. H. Peng, C. W. Chuang, J. K. Ho, C. N. Huang, and C. Y. Chen, “Deep ultraviolet enhanced wet chemical etching of gallium nitride” Appl. Phys. Lett. vol. 72, pp. 939, 1998. [22] J. A. Bardwell, J. B. Webb, H. Tang, J. Fraser, and S. Moisa, “Ultraviolet photoenhanced wet etching of GaN in K2S2O8 solution” J. Appl. Phys. vol. 89, pp.4142, 2001. [23] Z. H. Hwang, J. M. Hwang, H. L. Hwang, and W. H. Hung, “Electrodeless wet etching of GaN assisted with chopped ultraviolet light ”Appl. Phys. Lett. vol. 84, pp. 3759, 2004. [24] C. Youtsey, L. T. Romano, R. J. Molnar, and I. Adesida, “Rapid evaluation of dislocation densities in n-type GaN films using photoenhanced wet etching” Appl. Phys. Lett. vol. 74, pp. 3537, 1999. [25] P. Visconti, K. M. Jones, M. A. Reshchikov, R. Cingolani, H. Morkoc, and R. J. Molnar, “Dislocation density in GaN determined by photoelectrochemical and hot-wet etching” Appl. Phys. Lett. vol. 77, pp. 3532, 2000. [26] J. L. Weyher, F. D. Tichelaar, H. W. Zandbergen, L. Macht, and P. R. Hageman, “Selective photoetching and transmission electron microscopy studies of defects in heteroepitaxial GaN” J. Appl. Phys. vol. 90, pp. 6105, 2001. [27] J. R. Mileham, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, R. J. Shul, and S. P. Kilcoyne,” Wet chemical etching of AlN” Appl. Phys. Lett. vol. 67, pp. 1119, 1995. [28] C. Youtsey, I. Adesida, and G. Bulman, “Broad-area photoelectrochemical etching of GaN” Electron. Lett. vol. 33, pp. 245, 1997. [29] A. R. Stonas, T. Margalith, S. P. DenBaars, L. A. Coldren, and E. L. Hu, “Development of selective lateral photoelectrochemical etching of InGaN/GaN for lift-off applications” Appl. Phys. Lett. vol. 78, pp. 1945, 2001. [30] P. Visconti, M. A. Reshchikov, K. M. Jones, D. F. Wang, R. Cingolani, H. Morkoc, R. J. Molnar, and D. J. Smith, “Highly selective photoelectrochemical etching of nitride materials for defect investigation and device fabrication” J. Vac. Sci. Technol. B, vol. 19, pp. 1328, 2001. [31] E. D. Haberer, R. Sharma, A. R. Stonas, S. Nakamura, S. P. DenBaars, and E. L. Hu,” Removal of thick (>100 nm) InGaN layers for optical devices using bandgap-selective photoelectrochemical etching” Appl. Phys. Lett. vol. 85, pp. 762, 2004. [32] C. Youtsey, G. Bulman, and I. Adesida,” Dopant-selective photoenhanced wet etching of GaN” J. Electron. Mater. vol. 27, pp. 282, 1998. [33] A. R. Stonas, P. Kozodoy, H. Marchand, P. Fini, S. P. DenBaars, U. K. Mishra, and E. L. Hu, “Backside-illuminated photoelectrochemical etching for the fabrication of deeply undercut GaN structures” Appl. Phys. Lett. vol. 77, pp. 2610, 2000. [34] R. Sharma, E. D. Haberer, C. Meier, E. L. Hu, and S. Nakamura, “Vertically oriented GaN-based air-gap distributed Bragg reflector structure fabricated using band-gap-selective photoelectrochemical etching” Applied Physics Letters, vol. 87, pp. 051107, 2005. [35] T. G. Zhu, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, and R. D. Dupuis, “High-voltage mesa-structure GaN Schottky rectifiers processed by dry and wet etching” Applied Physics Letters, vol. 77, pp. 2918-2920, 2000. [36] W. S. Lee, Y. H. Choi, K. W. Chung, D. C. Moon, and M. W. Shin, “High temperature erformance of recessed photoelectrochemical etching process gate GaN MESFETs fabricated using” Electronics Letters, vol. 36, pp. 265-267, 2000. [37] A. T. Ping, D. Selvanathan, C. Youtsey, E. Piner, J. Redwing, and I. Adesida, “Gate recessing of GaN MESFETs using photoelectrochemical wet etching” Electronics Letters, vol. 35, pp. 2140-2141, 1999. [38] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, “Photoenhanced wet oxidation of gallium nitride” Appl. Phys. Lett., vol. 76, pp. 511, 2000. [39] T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, J. Graul, V. Schwegler, C. Kirchner, M. Kamp, and M. Heuken, “Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions” Appl. Phys. Lett. vol. 76, pp. 3923, 2000. [40] J. W. Seo, C. S. Oh, H. S. Jeong, J. W. Yang, K. Y. Lim, C. J. Yoon, and H. J. Lee,” Bias-assisted photoelectrochemical oxidation of n-GaN in H2O” Appl. Phys. Lett. vol. 81, pp. 1029, 2002. [41] D. J. Fu, T. W. Kang, Sh. U. Yuldashev, N. H. Kim, S. H. Park, J. S. Yun, and K. S. Chung, “Effect of photoelectrochemical oxidation on properties of GaN epilayers grown by molecular beam epitaxy” Appl. Phys. Lett. vol. 78, pp. 1309, 2001. [42] Y. Nakano, and T. Jimbo, “Interface properties of thermally oxidized n-GaN metal–oxide–semiconductor capacitors” Appl. Phys. Lett. vol. 82, pp. 218, 2003. [43] D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, D. H. Shin, C. H. Lee, and K. S. Chung, “GaN metal–oxide–semiconductor structures using Ga-oxide dielectrics formed by photoelectrochemical oxidation” Appl. Phys. Lett., vol. 80, pp. 446, 2002. [44] Y. Nakano, T. Kachi, and T. Jimbo, “Electrical properties of thermally oxidized p-GaN metal–oxide–semiconductor diodes” Appl. Phys. Lett. vol. 82, pp. 2443, 2003. [45] C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal–oxide–semiconductor devices using Ga2O3 dielectrics on n-type GaN ” Appl. Phys. Lett., vol. 82, pp. 4304, 2003. [46] C. Bae, C. Krug, G. Lucovsky, A. Chakraborty, and U. Mishra, “Work-function difference between Al and n-GaN from Al-gated n-GaN/nitrided-thin-Ga2O3 /SiO2 metal oxide semiconductor structures” Appl. Phys. Lett., vol. 84, pp. 5413, 2004. [47] L. H. Peng, C. Y. Lu, W. H. Wu, and S. L. Wang “Gallium nitride microcavities formed by photoenhanced wet oxidation” Appl. Phys. Lett., vol. 87, pp. 161902, 2005. [48] C. F. Lin, Z. J. Yang, J. H. Zheng, and J. J. Dai “Enhanced Light Output in Nitride-Based Light-Emitting Diodes by Roughening the Mesa Sidewall” IEEE Photon. Technol. Lett. vol. 17, no. 10, pp. 2038–2040, 2005. [49] K. Fuji, Y. Iwaki, H. Masui, J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa “Photoelectrochemical Properties of Nonpolar and Semipolar GaN” Jpn. J. Appl. Phys. vol. 46, pp. 6573, 2007. [50] A. C. Tamboli, M. C. Schmidt, S. Rajan, J. S. Speck, U. K. Mishra, S. P. DenBaars, and E. L. Hu “Smooth Top-Down Photoelectrochemical Etching of m-Plane GaN” J. Electrochem. Soc. vol. 156, no. 1, pp. H47-H51, 2009. [51] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, and R. H. Horng, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template”, Appl. Phys. Lett. vol. 89, pp. 161105, 2006. [52] Min-Ki Kwon, Ja-Yeon Kim, Il-Kyu Park, Ki Seok Kim, Gun-Young Jung, Seong-Ju Park, Je Won Kim, and Yong Chun Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal”, Appl. Phys. Lett. vol. 92, pp. 251110, 2008. [53] K. Y. Zang, Y. D. Wang, H. F. Liu, and S. J. Chua, “Structural and optical properties of InGaN/GaN multiple quantum wells grown on nano-air-bridged GaN template” Appl. Phys. Lett. vol. 89, pp. 171921, 2006. [54] Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, “Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template” Appl. Phys. Lett. vol. 87, pp. 251915, 2005. [55] E. Berkowicz, D. Gershoni, G. Bahir, E. Lakin, D. Shilo, E. Zolotoyabko, A. C. Abare, S. P. Denbaars, and L. A. Coldren, “Measured and calculated radiative lifetime and optical absorption of InxGa1-xN/GaN quantum structures” Phys. Rev. B vol. 61, pp. 10994, 2000. [56] Niu Nanhui , Wang Huaibing, Liu Jianping, Liu Naixin, Xing Yanhui, Han Jun, Deng Jun, and Shen Guangdi, “Enhanced luminescence of InGaN/GaN multiple quantum wells by strain reduction” Solid-State Electronics, vol.51, pp. 860–864, 2007. [57] C. F. Huang, C.Y. Chen, C. F. Lu, and C. C. Yang, “Reduced injection current induced blueshift in an InGaN/GaN quantumwell light-emitting diode of prestrained growth” Appl. Phys. Lett. vol. 91, pp. 051121, 2007. [58] C. B. Soh, S. Y. Chow, L. Y. Tan, H. Hartono, W. Liu, and S. J. Chua, “Enhanced luminescence efficiency due to carrier localization in InGaN/GaN heterostructures grown on nanoporous GaN templates” Appl. Phys. Lett. vol. 93, pp. 173107, 2008. [59] Chia-Feng Lin, Zhong-Jie Yang, Jing-Hui Zheng, and Jing-Jie Dai, “High-Efficiency InGaN Light-Emitting Diodes Via Sidewall Selective Etching and Oxidation” J. Electrochem. Soc. vol. 153, pp. G39, 2006. [60] T. Mukai, K. Takekawa, and S. Nakamura, “InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates” Jpn. J. Appl. Phys. vol. 37, pp. L839, 1998. [61] C. T. Lee, H. W. Chen and H. Y. Lee, “Metal-Oxide-Semiconductor Devices Using Ga2O3 Dielectrics on n-type GaN” Appl. Phys. Lett., Vol. 82, pp. 4304-4306, 2003. [62] Chia-Feng Lin, Jing-Hui Zheng, Zhong-Jie Yang, Jing-Jie Dai, Der-Yuh Lin, Chung-Ying Chang, Zhao-Xu Lai, and C. S. Hong, “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure” Appl. Phys. Lett. vol. 88, pp. 083121, 2006. [63] A. P. Vajpeyi, S. J. Chua, S. Tripathy, and E. A. Fitzgerald, “Effect of carrier density on the surface morphology and optical properties of nanoporous GaN prepared by UV assisted electrochemical etching” Appl. Phys. Lett. vol. 91, pp. 083110, 2007. [64] Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad “Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template” Appl. Phys. Lett. vol. 87, pp. 251915, 2005. [65] Yuanping Sun, Yong-Hoon Cho, Hwa-Mok Kim, and Tae Won Kang, “High efficiency and brightness of blue light emission from dislocation-free InGaN/GaN quantum well nanorod arrays” Appl. Phys. Lett. vol. 87, pp. 093115, 2005. [66] Satoshi Watanabe, Norihide Yamada, Masakazu Nagashima, Yusuke Ueki, Chiharu Sasaki, Yoichi Yamada, Tsunemasa Taguchi, Kazuyuki Tadatomo, Hiroaki Okagawa, and Hiromitsu Kudo, ”Internal quantum efficiency of highly-efficient InxGa1–xN-based near-ultraviolet light-emitting diodes” Appl. Phys. Lett. vol. 83, pp. 4906, 2003. [67] Muthusamy Senthil Kumar, Jae Young Park, Yong Seok Lee, Sang Jo Chung, Chang Hee Hong, and Eun-Kyung Suh, “Improved Internal Quantum Efficiency of Green Emitting InGaN/GaN Multiple Quantum Wells by In Preflow for InGaN Well Growth” J. J. Appl. Phys. vol. 47, pp. 839, 2008. [68] K. Y. Zang, S. J. Chua, J. H. Teng, N. S. S. Ang, A. M. Yong, and S. Y. Chow, “Nanoepitaxy to improve the efficiency of InGaN light-emitting diodes” Appl. Phys. Lett. vol. 92, pp. 243126, 2008. [69] M. Rebien, W. Henrion, M. Hong, J. P. Mannaerts, and M. Fleischer, “Optical properties of gallium oxide thin films” Appl. Phys. Lett., vol. 81, pp. 250, 2002. [70] Eun-Hyun Park, Jin Jang, Shalini Gupta, Ian Ferguson, Cheol-Hoi Kim, Soo-Kun Jeon, and Joong-Seo Park, “Air-voids embedded high efficiency InGaN-light emitting diode” Appl. Phys. Lett. vol. 93, pp. 191103, 2008. [71] T. Kuroda and A. Tackeuchi, “Influence of free carrier screening on the luminescence energy shift and carrier lifetime of InGaN quantum wells” J. Appl. Phys. vol. 92, pp. 3071, 2002. [72] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect” Appl. Phys. Lett. vol. 73, pp. 1691, 1998. [73] V.M. Bermudez, “The structure of low-index surfaces of β-Ga2O3.” Chemical Physics, vol. 323, pp. 193–203, 2006. [74] R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, S. Yasin, J. H. Rice, J. D. Smith, and R. A. Taylor “InGaN quantum dots grown by metalorganic vapor phase epitaxy employing a post-growth nitrogen anneal ” Appl. Phys. Lett. vol. 83, pp. 755, 2003. [75] J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao “Enhanced Output Power of GaN-Based LEDs With Nano-Patterned Sapphire Substrates” IEEE Photon. Technol. Lett. vol. 20, no. 13, pp. 1193–1195, 2008. [76] C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, Yu. Peichen, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template” Appl. Phys. Lett. vol. 93, pp. 081108, 2008. [77] C. F. Shen, S. J. Chang, T. K. Ko, C. T. Kuo, S. C. Shei, W. S. Chen, C. T. Lee, C. S. Chang, and Y. Z. Chiou “Nitride-Based Light Emitting Diodes With Textured Sidewalls and Pillar Waveguides” IEEE Photon. Technol. Lett. vol. 18, no. 23, pp. 2517–2519, 2006. [78] C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo “Nitride-Based LEDs With Textured Side Walls” IEEE Photon. Technol. Lett. vol. 16, no. 3, pp. 750–752, 2004. [79] Hyunsoo Kim, Jaehee Cho, Jeong Wook Lee, Sukho Yoon, Hyungkun Kim, Cheolsoo Sone, and Yongjo Park, Tae-Yeon Seong “Enhanced light extraction of GaN-based light-emitting diodes by using textured n-type GaN layers” Appl. Phys. Lett. vol. 90, pp. 161110, 2007. [80] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, and M. G. Craford, J. R. Wendt and J. A. Simmons, M. M. Sigalas “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures” Appl. Phys. Lett. vol. 84, pp. 3885, 2004. [81] Ja-Yeon Kim, Min-Ki Kwon, Ki-Sung Lee, and Seong-Ju Park, Sang Hoon Kim and Ki-Dong Lee “Enhanced light extraction from GaN-based green light-emitting diode with photonic crysta” Appl. Phys. Lett. vol. 91, pp. 181109, 2007. [82] A. P. Vajpeyi, S. J. Chua, S. Tripathy, E. A. Fitzgerald, W. Liu, P. Chen, and L. S. Wang “High Optical Quality Nanoporous GaN Prepared by Photoelectrochemical Etching” Electrochemical and Solid-State Letters, vol. 8, pp. G85-G88, 2005. [83] A. P. Vajpeyi, S. Tripathy, S. R. Shannigrahi, B. C. Foo, L. S. Wang, S. J. Chua, and E. Alves “Influence of Rapid Thermal Annealing on the Luminescence Properties of Nanoporous GaN Fi” Electrochemical and Solid-State Letters, vol. 9, pp. G150-G154, 2006. [84] H. Hartono, C. B. Soh, S. J. Chua, and E. A. Fitzgerald, “High Quality GaN Grown from a Nanoporous GaN Template” Journal of The Electrochemical Society, vol. 154, pp. H1004-H1007, 2007. [85] Keunjoo Kim, Jaeho Choi, Tae Sung Bae, Mi Jung, and Deok Ha Woo, “Enhanced Light Extraction from Nanoporous Surfaces of InGaN/GaN-Based Light Emitting Diodes” J. J. Appl. Phys.,vol. 46, pp. 6682, 2007. [86] Pearton SJ, Abernathy CR, Ren F, Lothian JR, Wisk PW, Katz A. “Dry and wet etching characteristics of InN, AlN, and GaN deposited by electron cyclotron resonance metalorganic molecular beam epitaxy” J. Vac. Sci. Technol. A, vol. 11, pp. 1772-1775, 1993. [87] Emre Alptekin, Hongbo Yu, Ekmel Ozbay, and Ozgur Aktas, “Low Damage Etching of GaN Surfaces via Bias-Assisted Photoenhanced Electrochemical Oxidation in Deionized Water” Journal of Electronic Materials, Vol. 36, No. 6, 2007. [88] M. S. Ferdous, X. Wang, M. N. Fairchild, and S. D. Hersee, “Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes” Appl. Phys. Lett. vol. 91, pp. 231107, 2007. [89] Shun-Cheng Hsu, Chong-Yi Lee, Jung-Min Hwang, Juh-Yuh Su, Dong-Sing Wuu, and Ray-Hua Horng, “Enhanced Light Output in Roughened GaN-Based Light-Emitting Diodes Using Electrodeless Photoelectrochemical Etching”, IEEE Photon. Technol. Lett. vol. 18, pp. 23, 2006. [90] J.E. Borton, C. Cai, M.I. Nathan, P. Chow, J.M. Van Hove, A. Wowchak, H. Morkoc, “Bias-assisted photoelectrochemical etching of p-GaN at 300 K” Appl. Phys. Lett. vol. 77, pp. 1227, 2000. [91] J.M. Hwang, K.Y. Ho, Z.H. Hwang, W.H. Hung, Kei May Lau, and H.-L. Hwang, “Efficient wet etching of GaN and p-GaN assisted with chopped UV source”, Superlattices and Microstructures vol. 35, pp. 45–57, 2004. [92] Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Measurement of piezoelectric field and tunneling times in strongly biased InGaN/GaN quantum wells” Appl. Phys. Lett. vol. 79, pp. 1130, 2001. [93] C. Y. Lai, T. M. Hsu, W. H. Chang, K. U. Tseng, C.-M. Lee, C. C. Chuo, and J. I. Chyi, “Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy” J. Appl. Phys. vol. 91, pp. 531, 2002. [94] I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, D. P. Bour, and M. Kneissl, “Determination of the piezoelectric field in InGaN quantum wells” Appl. Phys. Lett. vol. 86, pp. 131108, 2005. [95] T. M. Hsu, C. Y. Lai, W. H. Chang, C. C. Pan, C. C. Chuo, and J. I. Chyi, “Electroreflectance study on the polarization field in InGaN/AlInGaN multiple quantum wells” Appl. Phys. Lett. vol. 84, pp. 1114, 2004. [96] T. Onuma, H. Amaike, M. Kubota, K. Okamoto, H. Ohta, J. Ichihara, H. Takasu, and S. F. Chichibu, “Quantum-confined Stark effects in the m-plane In0.15Ga0.85N/GaN multiple quantum well blue light-emitting diode fabricated on low defect density freestanding GaN substrate” Appl. Phys. Lett. vol. 91, pp. 181903, 2007. [97] T. Koyama, T. Onuma, H. Masui, A. Chakraborty, B. A. Haskell, S. Keller, U. K. Mishra, J. S. Speck, S. Nakamura, S. P. DenBaars, T. Sota, and S. F. Chichibu, “Prospective emission efficiency and in-plane light polarization of nonpolar m-plane InxGa1−xN/GaN blue light emitting diodes fabricated on freestanding GaN substrates” Appl. Phys. Lett. vol. 89, pp. 091906, 2006. [98] M. Feneberg, F. Lipski, R. Sauer, K. Thonke, T. Wunderer, B. Neubert, P. Bruckner, and F. Scholz, “Piezoelectric fields in GaInN/GaN quantum wells on different crystal facets” Appl. Phys. Lett. vol. 89, pp. 242112, 2006. [99] J. D. Beach, R. T. Collins, and J. A. Turner “Band-Edge Potentials of n-Type and p-Type GaN” J. Electrochem. Soc. vol. 150, pp. A899, 2003. [100] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells” Jpn. J. Appl. Phys., Part 1, vol. 36, pp. 382, 1997. [101] F. Renner, P. Kiesel, G. H. Döhler, M. Kneissl, C. G. Van de Walle, and N. M. Johnson, “Quantitative analysis of the polarization fields and absorption changes in InGaN_GaN quantum wells with electroabsorption spectroscopy” Appl. Phys. Lett. vol. 81, pp. 490, 2002. [102] L. Dai, B. Zhang, J. Y. Lin, and H. X. Jiang, “Comparison of optical transitions in InGaN quantum well structures and microdisks” J. Appl. Phys. vol. 89, pp. 4951, 2001. [103] H. S. Kim, J. Y. Lin, H. X. Jiang, W. W. Chow, A. Botchkarev, and H. Morkoç, “Piezoelectric effects on the optical properties of GaN/AlxGa1-xN multiple quantum wells” Appl. Phys. Lett., vol. 73, pp. 3426, 1998. [104] Chao-Yi Fang, Weng-Jung Huang, Edward Yi Chang, Chia-Feng Lin and Ming-Shiann Feng, “Etching Damages on AlGaN, GaN and InGaN Caused by Hybrid Inductively Coupled Plasma Etch and Photoenhanced Chemical Wet Etch by Schottky Contact Characterizations”, Jpn. J. Appl. Phys. Vol. 42, pp. 4207-4212, 2003. [105] Lung-Chien Chen, Yin-Lin Huang, “High reliability GaN-based light-emitting diodes with photo-enhanced wet etching“, Solid-State Electronics, vol. 48, pp. 1239–1242, 2004. [106] Y. Gao, I. Ben Yaacov, U. L. Mishra, and E. L. Hu “Optimization of AlGaN/GaN Current Aperture Vertical Electron Transistor (CAVET) fabricated by Photoelectrochemical wet etching,” J. Appl. Phys. vol. 96, pp. 6925, 2004. [107] Eli Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, “Extreme selectivity in the lift-off of epitaxial GaAs films” Appl. Phys. Lett. vol. 51, pp. 2222, 1987. [108] F. Brunner, A. Knauer, T. Schenk, M. Weyers, J.T. Zettler “Quantitative analysis of in situ wafer bowing measurements for III-nitride growth on sapphire” Journal of Crystal Growth, vol. 310, pp. 2432, 2008. [109] Y. D. Jho, J. S. Yahung, E. Oh, and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-xN/GaN quantum wells” Phys. Rev. B, vol. 66, pp. 035334, 2002. [110] V. Tilak, A. Vertiatchikh, J. Jiang, N. Reeves, and S. Dasgupta, “Piezoresistive and piezoelectric effects in GaN” phys. stat. sol. (c), vol. 3, pp. 2307, 2006. [111] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, ”Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface” Jpn. J. Appl. Phys. vol. 40, pp. 583, 2001. [112] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, ”Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface” J. Appl. Phys. vol. 93, pp. 9383, 2003. [113] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu, and C. T. Lee, “Nitride-Based LEDs With 800℃ Grown p-AlInGaN–GaN Double-Cap Layers”, IEEE Photon. Technol. Lett. vol. 16, pp. 1447, 2004. [114] S. S. Schad, T, M. Scherer, M. Seyboth, and V. Schwegler, “Extraction Efficiency of GaN-Based LEDs” phys. stat. sol. (a), vol. 188, No. 1, pp.127, 2001. [115] D. Simeonov, E. Feltin, H. J.Bühlmann, T. Zhu, A. Castiglia, M. Mosca, J.-F. Carlin, R. Butté, and N. Grandjean, “Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells”, Appl. Phys. Lett. vol. 90, pp. 061106, 2007. [116] D. A. Stocker, I. D.Goepfer, K. S. Boutros, and J. M. Redwing, “Crystallographic Wet Chemical Etching of p-Type GaN” J. Electrochem. Soc. vol. 147, pp. 763, 2000. [117] D. A. Stocker, E. F. Schubert, and J. M. Redwing, ”Crystallographic wet chemical etching of GaN”, Appl. Phys. Lett., vol. 73, pp. 18, 1998. [118] C.F. Lin, Z.J. Yang, J.H. Zheng, and J.J. Dai, “Enhanced Light Output Power in InGaN Light-Emitting Diodes by Fabricating Inclined Undercut Structure” J. Electro¬chem. Soc. vol. 153, pp. G1020, 2006. [119] C. F. Lin, J. J. Dai, Z. J. Yang, J. H. Zheng, and S. Y. Chang, “Self-Assembled GaN:Mg Inverted Hexagonal Pyramids Formed Through a Photoelectrochemical Wet-Etching Process ” Electrochemical and Solid-State Letters, vol. 8, pp.12, 2005. [120] Jae-Soong Lee, Joonhee Lee, Sunghwan Kim, and Heonsu Jeon,” GaN-Based Light-Emitting Diode Structure With Monolithically Integrated Sidewall Deflectors for Enhanced Surface Emission” IEEE Photon. Technol. Lett. Vol. 18, No. 15, pp.1588, 2006. [121] C.K. Choi, Y.H. Kwon, B.D. Little, G.H. Gainer, J.J. Song, Y.C. Chang, S. Keller, U.K. Mishra, and S.P. DenBaars, “Time-resolved photoluminescence of InxGa1-xN/GaN multiple quantum well structures: Effect of Si doping in the barriers” Phys. Rev. B, vol. 64, pp. 245339, 2001. [122] U. Strauss, H.J. Lugauer, A. Weimar, J. Baur, G. Bru¨derl, D. Eisert, F. Kuhn, U. Zehnder, and V. Harle, “Progress of InGaN Light Emitting Diodes on SiC” Phys. Status Solidi C, vol. 1, pp. 276, 2002. [123] J. Baur, B. Hahn, M. Fehrer, D. Eisert, W. Stein, A. Plossl, F. Kuhn, H. Zull, M. Winter, and V. Ha¨rle, “InGaN on SiC LEDs for High Flux and High Current Applications ” Phys. Stat. Sol. (a), vol. 194, pp. 399, 2002. [124] Eun-Jeong Kang, Chul Huh, Suk-Hun Lee, Jong-Je Jung, Song-Jae Lee, and Seong-Ju Parke, “Improvement in Light-Output Power of InGaN/GaN LED by Formation of Nanosize Cavities on p-GaN Surface” Electrochem. Sol. Lett. vol. 8, no. 2, pp. G327-G329, 2005. [125] Ming-Kwei Lee, Chen-Lin Ho, and Po-Chun Chen, “Light Extraction Efficiency Enhancement of GaN Blue LED by Liquid-Phase-Deposited ZnO Rods” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 252, 2008. [126] Seok-In Na, Ga-Young Ha, Dae-Seob Han, Seok-Soon Kim, Ja-Yeon Kim, Jae-Hong Lim, Dong-Joon Kim, Kyeong-Ik Min, and Seong-Ju Park, ”Selective Wet Etching of p-GaN for Efficient GaN-Based Light-Emitting Diodes” IEEE Photon. Technol. Lett. vol. 18, no. 14, pp. 1512–1514, 2006. [127] Hung-Wen Huang, C. F. Lai, W. C. Wang, T. C. Lu,a H. C. Kuo, S. C. Wang, R. J. Tsai, and C. C. Yu, “Efficiency Enhancement of GaN-Based Power-Chip LEDs with Sidewall Roughness by Natural Lithography” Electrochem. Sol. Lett. , vol. 10, no. 2, pp. H59-H62, 2007. [128] H. Kyong Cho, J. Jang, J. H. Choi, J. Choi, J. Kim, J. Soo Lee, B. Lee, Y. Ho Choe, K. D. Lee, and S. Hoon Kim, “Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes” Opt. Express, vol. 19, pp. 8654, 2006. [129] K. Orita, S. Tamura, T. Takizawa, T. Ueda, M. Yuri, S. Takigawa, and D. Ueda, “High-Extraction-Efficiency Blue Light-Emitting Diode Using Extended-Pitch Photonic Crystal” J. J. Appl. Phys., Part 1, vol. 43, pp. 5809, 2004. [130] M. Iwaya, H. Kasugai, T. Kawashima, K. Iida, A. Honshio, Y. Miyake, S. Kamiyama, H. Amano, and I. Akasaki, “Improvement in light extraction efficiency in group III nitride-based light-emitting diodes using moth-eye structure” Thin Solid Films, vol. 515, pp. 768, 2006. [131] Joonmo Park, Jin-Kyoung Oh, Kwang-Woo Kwon, Young-Ho Kim, Sung-Soo Jo, Jun Key Lee, and Sang-Wan Ryu, “Improved Light Output of Photonic Crystal Light-Emitting Diode Fabricated by Anodized Aluminum Oxide Nano-Patterns”, Photon. Technol. Lett., vol. 20, no. 4, pp. 321–323, 2008. [132] D. Basak, M. Lachab, T. Nakanishi, and S. Sakai, “Effect of reactive ion etching on the yellow luminescence of GaN” Appl. Phys. Lett. vol. 75, pp. 3710, 1999.
摘要: 
本論文主要利用光輔助電化學氧化與蝕刻技術研製並分析氮化銦鎵發光二極體之光電特性。首先,利用光輔助電化學氧化法在n型氮化鎵上形成奈米多孔隙氧化鎵層,再以以有機金屬化學氣相磊晶法在此結構上成長氮化銦鎵發光二極體結構製作出具多孔隙結構之發光二極體,透過穿透式電子顯微鏡分析結果,具有多孔隙結構的發光二極體可以減少差排密度,在20毫安操作電流下與未處理過的發光二極體比較,其電激發螢光光譜波長有5nm的藍移效應和52%的亮度提升。另外,使用光輔助電化學氧化製程在p型氮化鎵上形成圖樣化多孔隙奈米結構之發光二極體,比較在20mA操作電流下的標準、多孔隙奈米結構和圖樣化多孔隙奈米結構發光二極體電激發螢光光譜波長(操作電壓)分別為461.2nm (3.1V)、459.6nm(9.2V)、與460.3nm (3.5V),由於多孔隙奈米結構發光二極體的p型氮化鎵表面為非歐姆接觸表面造成具有較大的操作電壓值,利用圖樣化多孔隙結構可以改善其缺點並且可以有26.4%的亮度提升效應。再利用光輔助電化學氧化技術來取代傳統的電漿乾式蝕刻技術製作出濕式平台蝕刻發光二極體,在氮化銦鎵發光層具有較快的側蝕蝕刻速率(3.4μm/h)形成導角結構,其結構可以增加光取出效率,使用濕式平台蝕刻技術可以避免利用乾式蝕刻所造成的電漿損害減少漏電流。
另一方面,利用光輔助電化學氧化蝕刻技術和穩定晶面濕式蝕刻在發光二極體p型氮化鎵平台側壁形成倒立圓錐狀結構,對於p型氮化鎵和n型氮化鎵穩定晶面濕式蝕刻面為{ }和{ },其發光二極體具有較大的發散角和發光效率。另外,也利用在氫氧化鉀溶液光輔助電化學蝕刻技術,在10µm沒有透明導電電極區域製作出倒六角錐結構,其結構具有上端的p型氮化鎵和底部的氮化銦鎵發光層,具有倒六角錐結構發光二極體發散角為146o較未過的處理發光二極體小(160o),倒六角錐結構會將電機發光光線散射與全反射並提升指向正向方向亮度(1.6倍的提升) 。依據這些實驗結果與分析,可顯示光輔助電化學氧化與蝕刻技術之可行性,並可應用於製作出高效率的氮化銦鎵發光二極體。

The major topics in this thesis are focused on the fabricated processes and optical analysises in the high efficiency InGaN-based light emitting diodes (LEDs) through photoelectrochemical (PEC) oxidation and wet etching technique. The LED structures were regrown on the GaN template layers that consisted of a PEC oxidation treated nanoporous GaN:Si layer with a multiple-air-gaps (MAG) structure and nanoporous GaOx layers that acted as a submicro-mask for the epitaxial lateral overgrowth process. The threading dislocation density of the MAG-LED structure is seen reduced from the cross-sectional transmission electron microscopy micrographs. The electroluminescence (EL) spectra have a 5.0 nm blueshift phenomenon and a peak intensity has a 52% enhancement in the MAG-LED compared to a standard LED at a 20mA operating current. The InGaN-based LEDs with the pattern-nanoporous p-type GaN surface were fabricated by using PEC oxidation process. The peak wavelengths of EL and operation voltages were measured as the values of 461.2nm (3.1V), 459.6nm (9.2V), and 460.3nm (3.5V) for conventional, nanoporous, and pattern-nanoporous LEDs at 20mA operation current, respectively. The larger operation voltage of nanoporous LED was caused by the non-ohmic contact on PEC treated p-type GaN:Mg surface. By using the pattern-nanoporous p-type GaN:Mg structure, the operation voltage of the pattern-nanoporous LED was reduced to 3.5V. The light output power had 12.1% and 26.4% enhancements for the nanoporous and pattern-nanoporous LEDs compared to the conventional LEDs. A PEC wet mesa etching (WME) process was used to fabricate InGaN-based light LEDs as a substitute for the conventional plasma mesa dry etching process. The higher lateral wet-etching rate (3.4 μm/h) on the InGaN active layer was observed to form a wider undercut structure that has 42.7% light output power enhancement compared to a conventional LED that was fabricated with the plasma dry etching process. The reverse current of a lateral-etched LED was suppressed by avoiding plasma damage during the dry mesa etching process.
InGaN-based LEDs were fabricated to have a higher light extraction through the PEC mesa shaping process. After the PEC selective wet oxidation and wet etching processes, stable and controllable crystallographic etching planes were formed as p-type GaN { } planes and n-type GaN { } planes included at an angle of 27o. The ever-present cone-shaped structure of a PEC-treated LED has a larger light scattering area and higher light extraction cones on the mesa sidewall. This cone-shaped-sidewall (CSS) LED has a higher light output power and a larger divergence angle compared with a conventional LED measured in an LED chip form. The self-assembled hexagonal inverted pyramids (HIP) structures were formed at the mesa-edge region for HIP-LED. The HIP structures consisted of the top p-type GaN:Mg layer and bottom InGaN active layers were fabricated through the band-gap selective PEC wet etching in a 2.2M potassium hydroxide solution. In HIP-LED structures, the light output power had 1.6 times enhancement and the divergent angle had reduced to 146o compared to the standard LED (160o) without PEC treated. The light emitting from the InGaN active layer was scattered and extracted to the normal direction through the hexagonal inverted pyramid structures located at the 10µm-width mesa edge regions without the transparence contact layer deposited. Based on these results, the PEC techniques have the advantages to fabricate the higher efficiency InGaN-based LED.
URI: http://hdl.handle.net/11455/10545
其他識別: U0005-2607200721033100
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.