Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10561
標題: Improvement of PEMFC Performance by Adding AB2-type Hydrogen Storage Alloy in the Anode Catalyst Layer
添加AB2型儲氫合金於陽極觸媒層以提升 PEMFC之性能
作者: 張林杰
Chang, Lin-Chien
關鍵字: Proton exchange membrane fuel cell (PEMFC);質子交換膜燃料電池;Water management;Hydrogen storage alloy (HSA);水管理;儲氫合金
出版社: 材料科學與工程學系所
引用: 參考文獻 1. 衣寶廉,“燃料電池-原理與應用”,五南圖書出版社,(2005)。 2. 熊居政,“奈米化白金觸媒在燃料電池之電極材料上佈置方法及電化學測試之 研究”,碩士論文,中國文化大學材料科學與製造研究所,(2004)。 3. 黃鎮江,“燃料電池”,全華科技圖書公司,(2005)。 4. K. Hassmann and R. Rippel, J. Power Sources, 71 (1998) 75. 5. W. P. Teagan, J. Bentley, and B. Barnett, J. Power Sources, 71 (1998) 80. 6. F. Barbir and T. Gomez, J. Hydrogen Energy, 22 (1997) 1027. 7. W. Donitz, J. Hydrogen Energy, 23 (1998) 611. 8. A. J. Appleby, A.C. Lloyd, and C. K. Dyer, “The future of fuel cell”, in Scientific American, (1999) 56. 9. Taiwan Fuel Cell Information, http://www.tfci.org.tw/. 10. 李世興,“電池活用手冊”,全華科技圖書公司,(1992)。 11. Y. Takasu, T. Kawaguchi, W. Sugimoto, and Y. Murakami, Electrochimica Acta, 48 (2003) 3861. 12. G. Chena, A. Delafuente, S. Sarangapani, and E. Thomas, Catalysis Today, 67 (2001) 341. 13. R. Venkataraman, H. R. Kunz, and J. M. Fenton, J. Electrochem. Soc., 150 (2003) A278. 14. K. T. Kim, Y. G. Kim, and J. S. Chung, J. Electrochem. Soc., 142 (1995) 1531. 15. Y. Yoshikawa, T. Matsuura, M. Kato, and M. Hori, J. Power Sources, 158 (2006) 143. 16. 趙文愷,“添加親水性γ-氧化鋁於陽極觸媒層中改善PEMFC的效能”,碩士論文,國立中興大學材料工程研究所,(2007)。 17. X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao, and J. Yu, J. Power Sources, 79 (1999) 75. 18. X. L. Wang, H. M. Zhang, J. L. Zhang, and H. F. Xu, Electrochimica Acta, 51 (2006) 4909. 19. S. Escribano, J. F. Blachot, J. Eth’eve, A. Morin, and R. Mosdale, J. Power Sources, 156 (2006) 8. 20. Y. H. Pai, J. H. Ke, H. F. Huang, C. M. Lee, J. M. Zen, and F. S. Shieu, J. Power Sources, 161 (2006) 275. 21. X. Zang and Z. Shen, Fuel, 81 (2002) 2199. 22. C. Lim and C. Y. Wang, J. Power Sources, 113 (2003) 145. 23. G. Karimi and X. Li, J. Power Sources, 140 (2005) 1. 24. X. Ren and S. Gottesfeld, J. Electrochem. Soc., 148 (2001) A87. 25. U. Pasaogullari and C. Y. Wang, J. Electrochem. Soc., 151 (2004) A399. 26. N. Djilali and D. Lu, J. Therm. Sci., 41 (2002) 29. 27. J. Chen, T. Matsuura, and M. Hori, J. Power Sources, 131 (2004) 155. 28. S. Lister and G. McLean, J. Power Sources, 130 (2004) 61. 29. D. Bevers, R. Rogers, and M. V. Bradke, J. Power Sources, 63 (1996) 193. 30. V. A. Pagnian, E. A. Ticianell, and E. R. Gonzalez, J. Appl. Electrochem., 26 (1996) 297. 31. L. Giorgi, E. Antolini, A. Pozio, and E. Passalacqua, Electrochim. Acta, 43 (1998) 3675. 32. C. Lim and C. Y. Wang, Electrochem. Acta, 49 (2004) 4149. 33. D. S. Chan and C. C. Wang, J. Power Sources, 50 (1994) 163. 34. J. Benziger, J. Nehlsen, D. Blackwell, T. Brenan, and J. Itescu, J. Membrane Sci., 261 (2005) 98. 35. B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, B. C. Chan, and T. E. Mallouk, J. Phys. Chem. B., 102 (1998) 9997. 36. H. Wendt, Electrochim. Acta, 31 (2001) 3637. 37. K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, and Y. E. Sung, J. Phys. Chem. B., 106 (2002) 1869. 38. James Larminie, “Fuel Cell System Explained, 2nd ed.”, Wiley, New York, (2003). 39. M. S. Wilson, J. A. Valerio, and S. Gottesfeld, Electrochim. Acta, 40 (1995) 355. 40. G. S. Kimar, M. Raja, and S. Parthasarathy, Electrochim. Acta, 40 (1995) 285. 41. M. S. Willon, U. S. Pat., No.5, 234, (1993) 777. 42. R. O’Hayre, S. J. Lee, S. W. Cha, and F. B. Prinz, J. Power Sources, 109 (2002) 483. 43. D. Gruber, N. Ponath, and J. M’uller, Electrochim. Acta, 51 (2005) 701. 44. S. Litster and G. McLean, J. Power Sources, 130 (2004) 61. 45. F. N. Buchi, D. Tran, and S. Srinivassan, Proceeding of the First International Symposium on Proton Conducting Membrane Fuel Cell I, the Electrochemical Scoiety, Inc., Pennington, NJ, (1995) 226. 46. W. H. Buck, “Advanced Proton Exchange Membrane Development for High Performance Fuel Cells”, Proceedings of the Power Sources Conference (37th), Army Research Lab., Fort Monmouth, (1996) 104. 47. N. Steinera, P. Mocoteguy, D. Candusso, D. Hissel, A. Hernandez, and A. Aslanides, J. Power Sources, 183 (2008) 260. 48. H. Zijlstra and F. F. Westendorp, Sol. State Comm., 7 (1969) 857. 49. 大角泰章,水素吸藏合金,(1993) 25。 50. K. C. Hong, J. Power Sources, 96 (2001) 85. 51. K. Rummel, R. L. Cohen, P. Gutlich, and L. W. West, Appl. Phys., 41 (1982) 199. 52. E. Eicke and L. Paul, J. Less-Common Metals, 143 (1990) 26. 53. 科學人雜誌,氫燃料電池車乾淨上路,4 (2005) 57。 54. G. E. Fernández, D. Rodríguez, and G. Meyer, J. Hydrogen Energy, 23 (1998) 1193. 55. M. Martin, C. Gommel, C. Borkhart, and E. Fromm, J. Alloys Comp., 238 (1996) 193. 56. 林宗賢,“Al置換量對LaNi5-xAlx合金吸放氫性能及微結構之影響研究”,碩士論文,國立清華大學材料科學工程學系,(1999)。 57. T. Haraki, N. Inomata, H. Uchida, J. Alloys Comp. , 407 (1999) 293. 58. 黃振賢,“機械材料(新修訂二版) ”,新文京開發出版股份有限公司,(2005)。 59. A. Züttel, Naturwissenschaften, 91 (2004) 157. 60. V. T. Venkatesan and W. E. Wallace, J. Less-Common Met., 91 (1983) 239. 61. T. B. Flanagan and W. A. Oates, J. Less-Common Met., 100 (1984) 299. 62. T. B. Flanagan and H. S. Chung, J. Less-Common Met., 125 (1986) 247. 63. B. Baranowski, J. Alloys Comp., 200 (1993) 87. 64. 廖世傑,工業材料,190 (2002) 147。 65. G. Sandrock, J. Alloys Comp., 877 (1999) 293. 66. 李全安,陳云貴,王麗華,涂銘旌,“材料開發與應用”,3 (1999) 11。 67. 沉西湖,任學佑,“世界有色金屬”,9 (1998) 11。 68. D. Y. Yan, G. Sandrock, and S. Suda, J. Alloys Comp., 216 (1994) 56. 69. O. Bernauer, J. Topler, D. Noreus, R. Hempelmann, and D. Richter, Int. J. Hydrogen Energy, 14 (1989) 187. 70. H. Homma, H. Saitoh, and A. Kamegawa, and M. Okada., Mater. Trans. 43 (2002) 2741. 71. K. Girgis, R. W. Cahn, and P. Haasen, “Physical Matallurgy”, Amsterdam, New York , (1983) 243. 72. J. J. G. Willems, Philips J. Res. Suppl., 39 (1984) 10. 73. 翁芳柏,徐耀昇,“燃料電池實驗教材”,亞太燃料電池科技股份公司,(2006)。 74. 黃鎮江,“燃料電池(第三版) ”,滄海書局,(2008)。 75. C. Suryanarayana, Prog. Mater. Sci., 46 (2001) 1. 76. http://www.bioway.com.tw/Technology/tech-2_more.asp?KnowledgeID=27 77. A. W. Adamson, Interscience Publishers, Los Angeles, California, (1976). 78. G. Ertl, H. Knözinger, and J. Weitkamp, “ Handbook of Heterogeneous Catalysis ”, Weinheim, 3 (1997) 1508. 79. L. B. Valdes, Proc. IRE, 42 (1954) 420. 80. L. J. Phil, Res. Rep. 13 (1958) 1. 81. H. J. Chuang, S. S. Huang, C. Y. Ma, and S. L. I. Chan, J. Alloys Comp., 285 (1999) 284. 82. 陳文照,曾春風,游信和,“材料科學與工程導論”,高立圖書有限公司,(2005) 83. A. S. Aricò, P. Creti, T. Kim, R. Mantegna, N. Giordano, and V. Antonucci, J. Electrochem. Soc., 143 (1996) 3950.
摘要: 
中文摘要
質子交換膜燃料電池 (PEMFC) 由於具有高能量密度、高轉換效率、操作容易和零污染等優點備受矚目。ㄧ般質子交換膜 (PEM)會由於電滲作用 (electro-osmotic) 使得陽極側缺水 (dewatering),膜如果太乾燥會導致質子交換膜燃料電池性能下降,因此質子交換膜必須要保持濕潤的狀態才有較高的質子導電度。習慣上會將反應氣體在進入燃料電池之前先經由外部增濕器增濕,然而這種方式會增加整體的重量而且使系統複雜化。因此,研發具有自增濕能力的膜電極組 (MEA) 是質子交換膜燃料電池的一個關鍵技術。
本研究主要探討在不外加增濕系統的情況下,製備出具有自増濕能力的膜電極組來改善陽極缺水的情況。在這個研究中,AB2型儲氫合金 (AB2-type HSA) 被用來當作水分子的吸附劑添加於陽極觸媒層中,增進陽極側的濕度並提升電池的性能。由接觸角分析結果發現隨著AB2型儲氫合金含量的增加 (從10 wt.%到40 wt.%),接觸角有下降的趨勢,顯示AB2型儲氫合金具有親水性。在單電池測試中,發現AB2型儲氫合金添加在陽極觸媒層中,可以幫助外加水氣的吸收,同時增強背擴散現象,其中以添加10 wt.%球磨處理過的AB2型儲氫合金的性能最佳。

Abstract
Proton exchange membrane fuel cell (PEMFC) has attracted various attentions due to its advantages of high power density, high energy-conversion, simplicity of operation and near-zero pollutant. For the most part, the anode side of the proton exchange membrane (PEM) and the anode catalyst layer are often dewatering due to the electro-osmotic drag effect. Furthermore, PEM needs to be well-hydrated in order to maintain high proton conductivity, or it will lead to a considerable drop of the PEMFC' performance. Traditionally, the reactant gases are humidified through an external humidifier before entering the cell. However, this kind of operation system increases the overall weight, and easily complicates the cell system. Thus, investigating membrane-electrode assembly (MEA) with self humidification ability is the key technology to increase the performance of PEMFC.
The aim of this study is preparing a self-humidified MEA without external humidifier in order to improve the hydration level of anode side. In this study, AB2-type hydrogen storage alloy (HSA) is used as water-absorbent and added into the anode catalyst layer for enhancing the wettability of anode and cell performance at low-humidity condition. The experimental results indicate that a decrease of contact angle would be observed as the increase of AB2-type HSA content from 10 wt. % to 40 wt. %. It demonstrates that the hydrophilic property of AB2-type HSA. In the single cell test, the results proved that the addition of AB2-type HSA into anode catalyst layer can actually enhance the adsorption of water and promote the back diffusion reaction simultaneously. Within different addition amount, the 10 wt. % AB2-type HSA by ball-milling treatment doped anode catalyst layer reveals the best performance.
URI: http://hdl.handle.net/11455/10561
其他識別: U0005-2808200708123400
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.