Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10566
DC FieldValueLanguage
dc.contributor何永鈞zh_TW
dc.contributor李進興zh_TW
dc.contributor.advisor張立信zh_TW
dc.contributor.author張振崴zh_TW
dc.contributor.authorChang, Zhen-Weien_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:45:30Z-
dc.date.available2014-06-06T06:45:30Z-
dc.identifierU0005-2908200713365300zh_TW
dc.identifier.citation1.S. Jacobsson and A. Johnson, “The diffusion of renewable energy technology: an analytical framework and key issues for research,” Energy Policy, 28 (2000) 625. 2.T. J. Seebeck, “Magnetic polarization of metals and minerals,” Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265 (1823). 3.A. F. Ioffe, S. V. Airapetyants, A. V. Ioffe, N. V. Kolomoets and L. S. Stilbans, “On increasing the efficiency of semiconducting thermocouples,” Dokl. Akad. Nauk SSSR, 106 (1956) 931. 4.H. J. Goldsmid and R. W. Douglas, “The use of semiconductors in thermoelectric refrigeration,” Br. J. Appl. Phys., 5 (1954) 386. 5.C. E. Kelly, “The MHW converter (RTG),” 10th Int. Conf. on Energy Conversion Engineering, (1975) 880 6.M. A. Karri, E. F. Thacher, B. T. Helenbrook and M. S. Compeau, “Thermoelectrical energy recovery from the exhaust of a light truck,” 2003 Diesel Engine Emissions Reduction Conference. 7.F. Eric, “Thermoelectric generator,” New York State Energy Research and Development Authority, (2004). 8.W. Jan, J. W. Vandersande and J. P. Fleurial, “Thermal management of power electronics using thermoelectric coolers,” 15th Int. Conf. on Thermoelectrics, Pasadena, (1996) 252. 9.朱旭山,「熱電材料與元件之發展應用」,工業材料雜誌,第220期,(2005),93 10.Francis Stabler, “Automotive applications for high efficiency thermoelectrics,” High efficiency thermoelectric workshop, San Diego, California, (2002). 11.D. M. Rowe, “CRC Handbook of Thermoelectrics,” CRC Press Boca Raton London New York Washington, (1995). 12.G. S. Nolas, G. A. Slack, J. L. Cohn and S. B. Schujman, “The next generation of thermoelectric materials,” Proceedings of the 17th International Conference on Thermoelectrics, (1998) 294. 13.朱旭山,「熱電材料與元件之原理與應用」,電子與材料雜誌,第22期,(2004),78。 14.Safa Kasap, “Thermoelectric effects in metals:Theermocouples,” (S. O. Kasap 1997-2001) An e-Booklet. 15.J. C. Peltier, “Nouvelles experiences sur la caloricite des courans electrique,” Ann. Chim. et Phys., 56 (1834) 371. 16.W. Thomson, “Account of researches in thermo-electricity,” Philos. Mag., 8 (1854) 62. 17.W. Thomson, “On the electrodynamic qualities of metals,” Philos. Trans. R. Soc. London, 146 (1856) 649. 18.H. J. Goldsmid, “Thermoelectric Refrigeration,” Plenum, New York, (1986) 19.J. P. Fleurial, A. Borshchevsky, T. Caillat and R. Ewell, “New materials and devices for thermoelectric applications,” Energy Conversion Engineering Conference, (1997) 1080. 20.L. D. Hicks and M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor,” Phys. Rev. B, 47 (1993) 16631, 21.N. Scoville, C. Bajgar, J. P. Fleurial and J. Vaderasnde, “Thermal conductivity reduction in SiGe alloys by the addition of nanophase particles,” NanoStuctured Materials, 5 (1995) 207. 22.M. Jonson and G. D. Mahan, “Mott’s formula for the thermopower and the Wiedemann-Franz law,” Phys. Rev. B, 21 (1980) 4223. 23.V. I. Fistul, “Heavily Doped Semiconductors,” Plenum, New York, (1969) 24.D. M. Rowe and C. M. Bhandari, “Modern Thermoelectrics,” Holt Saunders, London, (1983). 25.C. M. Bhandari and D. M. Rowe, “Thermal Conduction in Semiconductors,” Wiley Eastern Limited, New Delhi, (1998). 26.熊聰,唐新峰,I-型鍺基籠合物 A8IIB16IIIB30IV 的合成及熱電性能研究,武漢理工大學新材所,(2006),第16頁。 27.S. E. Mohamed, H. S. Hamed and C. Thierry, “Efficient segmented thermoelectric unicouples for space power applications,” Energy Conversion and Management, 44 (2003) 1755. 28.張立信,申請中科院承接院外委託計畫,中山科學研究院,中興大學材料科學與工程研究所,(2008) 第18頁。 29.K. Fujita, T. Mochida and K. Nakamura, “High-temperature thermoelectric properties of NaxCoO2-δ single crystals” Jpn. J. Appl. Phys. 40(7) (2001) 4644. 30.L. Chen, “Barium-Filled Skutterudite: A High Performance n-Type Thermoelectric Material,” Key Eng. Mater. 224-226 (2002) 197. 31.K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzides, “Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit” Science 303(5659) (2004) 818. 32.W. Zhang, L. Chen and X. Li, “High Temperature Thermoelectric Properties of AgPb18+xSbTe20,” Key Eng. Mater. 336-338 I (2007) 857. 33.N. Okinaka and T. Akiyama, “Thermoelectric Properties of Nonstoichiometric TiO as a Promising Oxide Material for High-temperature Thermoelectric Conversion,” 24th ICT, (2005) 34. 34.Y. Z. Pei, L. D. Chen, W. Zhang, X. Shi, S. Q. Bai, X. Y. Zhao, Z. G. Mei and X. Y. Li, “Synthesis and thermoelectric properties of KyCo4Sb12” Appl. Phys. Letters 89(2) (2006) 221107. 35.J.-H. Kim, N. L. Okamoto, K. Kishida, K. Tanaka and H. Inui, “High thermoelectric performance of type-III clathrate compounds of the Ba-Ga-Ge system,” Acta Materialia, 54 (2006) 2057. 36.C. Mogens, J. Fanni and B. B. Iversen, “The rattler effect in thermoelectric clathrates studied by inelastic neutron scattering,” Phys. B, 385-386 (2006) 505. 37.G. S. Nolas, J. L. Cohn, G. A. Slask and S. B. Schujman, “Semiconducting Ge clathrates:Promising cadidates for thermoelectric applications,” Applied Physics Letters, 73 (1998) 178. 38.J. Baumert, C. Gutt, M. Krisch and H. Requardt, “Elastic properties of methane hydrate at high pressures,” Phys. Rev. B, 72(5) (2005) 054302-1. 39.R. Peter, “Formation of Clathrates,” IEEE (2005) 443. 40.C.-C. Wilder, B. Horst, P. Silke, B. Michael, S. Frank and G. Yuri, “Ba6Ge25:low-temperature Ge-Ge bond breaking during temperature-induced structure transformation,” Journal of Solid State Chemistry 178 (2005) 715. 41.V. L. Kuznetsov, L. A. Kuzentsova and A. E. Kaliazin et al., “Preparation and thermoelectric properties of A8IIB16IIIB30IV clathrate compounds,” J. Appl. Phys., 87(11) (2000) 7871. 42.H. Fukuoka, K. Iwai, S. Yamanaka, H. Abe, K. Yoza and L. Haming, “Preparation and Structure of a New Germanium Clathrate, Ba24Ge100,” Journal of Solid State Chemistry, 151 (2000) 117. 43.J. F. Meng et al., “Threefold enhancement of the thermoelectric figure of merit for pressure turned Sr8Ga16Ge30,” Journal of Applied Physics 89 (2001) 1730. 44.汪建民,材料分析,中國材料科學學會 (1998) 45.M. J. O’Neill, “Measurement of specific heat functions by differential scanning calorimetry,” Anal. Chem., 38 (1966) 1330.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10566-
dc.description.abstract本實驗利用真空電弧熔煉法搭配熱處理的方式製備高熱電優值之 N 型 Ba-Ga-Ge 合金,並探討其材料及熱電特性。另一方面將所製備出之高熱電優值之 N 型 Ba-Ga-Ge 合金進行熱壓改質,並探討經熱壓改質後之材料及熱電特性。 由 EDS 成份定量分析可得知,本實驗所製備之N 型 Ba-Ga-Ge 合金,其實際成份比例為 Ba23.5Ga14Ge86.5。從背向散射電子影像、X 光繞射分析中及Ba-Ge 相圖分析可得知,Ba23.5Ga14Ge86.5 合金中主要是由Ba24GaxGe100-x (Type-III) 相及 Ba8GaxGe46-x (Type-I) 相所組成,並無非晶之 BaGe2 相形成,材料中缺陷因而減少,大幅地提升材料之電性表現。N 型 Ba23.5Ga14Ge86.5 合金之最佳熱電優值在溫度為 600 ℃時,其值為 1.35。 另外經過熱壓改質後之 N 型 Ba23.5Ga14Ge86.5 合金,在熱壓溫度為 400 ℃、500 ℃、600 ℃時,裂痕大幅增加導致電阻率及 Seebeck 係數上升;在熱壓溫度為 700 ℃時,由於 Ge 相形成,晶籠結構受影響,導致電阻率及 Seebeck 係數上升。因此經熱壓改質後試片之熱電特性表現較差。zh_TW
dc.description.abstractIn this study, the N-type Ba-Ga-Ge alloys with a high thermoelectric performance were prepared by arc re-melting and heat treatment. Some N-type Ba-Ga-Ge alloys were also hot-pressed for attempting to improve the performance. The effects of hot-pressing on metallurgical and thermoelectric properties of N-type Ba-Ga-Ge alloys were studied. From the EDS analysis, the composition of the prepared N-type Ba-Ga-Ge alloy was Ba23.5Ga14Ge86.5. From BEI, XRD and Ba-Ge phase diagram analysis, the Ba23.5Ga14Ge86.5 alloy was composed of the Type-III and Type-I phases without the amorphous BaGe2 phase. This resulted in adecrease of defects and consequently, the electrical performance was improved. The optimal velue of figure-of-merit is 1.35 at 600 ℃. In the hot-pressed N-type Ba-Ga-Ge alloys cracks forming at 400, 500, 600 ℃ result in increases in the electrical resistivity and Seebeck coefficient. At 700 ℃, the clathrate structure is influenced by the formation of the Ge phase. As a result, both the electrical resistivity and Seebeck coefficient increased. That means the thermoelectric performance of the hot-pressed samples was not improved.en_US
dc.description.tableofcontents摘要……………………………………………………………………i Abstract………………………………………………………………ii 目次……………………………………………………………………iii 表目次…………………………………………………………………vi 圖目次…………………………………………………………………vii 第一章 緒論…………………………………………………………1 1.1 前言……………………………………………………………1 1.2 熱電材料的起源與應用………………………………………1 1.3 研究目的………………………………………………………4 第二章 理論基礎與文獻回顧………………………………………5 2.1 熱電效應………………………………………………………5 2.1.1 Seebeck效應………………………………………………5 2.1.2 Peltier效應………………………………………………7 2.1.3 Thomson效應………………………………………………9 2.2 熱電優值………………………………………………………10 2.2.1 功率因子……………………………………………………13 2.2.2 熱傳導率……………………………………………………13 2.3 熱電材料之文獻回顧…………………………………………14 2.3.1 熱電材料之選用……………………………………………14 2.3.2 應用於熱電材料之晶籠化合物介紹………………………16 2.3.3 Ba-Ga-Ge 晶籠化合物…………………………………….18 2.3.4 熱壓改質對晶籠化合物之影響……………………………25 第三章 實驗方法與步驟………………………………………………27 3.1 實驗流程………………………………………………………27 3.2 實驗製程介紹…………………………………………………29 3.2.1 材料準備……………………………………………………29 3.2.2 真空電弧熔煉………………………………………………29 3.2.3 真空石英封管………………………………………………32 3.2.4 熱處理………………………………………………………33 3.2.5 真空熱壓……………………………………………………33 3.3 材料性質分析…………………………………………………35 3.3.1 X-ray 繞射分析……………………………………………35 3.3.2 場發射掃描式電子顯微鏡 (FE-SEM)……………………35 3.3.3 能量散佈光譜儀 (EDS)……………………………………36 3.4 熱電特性量測…………………………………………………36 3.4.1 量測系統……………………………………………………37 3.4.2 電阻率量測…………………………………………………39 3.4.3 Seebeck 係數量測…………………………………………40 3.4.4 熱傳導率量測………………………………………………41 第四章 結果與討論…………………………………………………46 4.1 高熱電優值之N型Ba-Ga-Ge合金塊材……………………………46 4.1.1 高熱電優值之N型Ba-Ga-Ge合金塊材之顯微結構分析…46 4.1.2 高熱電優值之N型Ba-Ga-Ge合金塊材之X光繞射分析…..48 4.1.3 高熱電優值之N型Ba-Ga-Ge合金塊材之成份分析………51 4.1.4 高熱電優值之N型Ba-Ga-Ge合金塊材之相圖分析………53 4.1.5 高熱電優值之N型Ba-Ga-Ge合金塊材之電阻率表現……56 4.1.6 高熱電優值之N型Ba-Ga-Ge合金之Seebeck係數表現……57 4.1.7 高熱電優值之N型Ba-Ga-Ge合金塊材之功率因子表現…59 4.1.8 高熱電優值之N型Ba-Ga-Ge合金塊材之熱傳導率表現…60 4.1.9 高熱電優值之N型Ba-Ga-Ge合金塊材之熱電優值表現…62 4.2 N 型 Ba-Ga-Ge 合金塊材之熱壓改質………………………63 4.2.1 N型Ba-Ga-Ge 合金塊材經熱壓改質後之顯微結構分析…63 4.2.2 N型Ba-Ga-Ge 合金塊材經熱壓改質後之 X 光繞射分析.65 4.2.3 N型Ba-Ga-Ge 合金塊材經熱壓改質後之相圖分析………67 4.2.4 N型Ba-Ga-Ge 合金塊材經熱壓改質後之電阻率表現……68 4.2.5 N型Ba-Ga-Ge 合金塊材經熱壓改質後之Seebeck 係數…69 4.2.6 N型Ba-Ga-Ge 合金塊材經熱壓改質後之功率因子表現…71 第五章 結論……………………………………………………………73 參考文獻…………………………………………………………………75zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2908200713365300en_US
dc.subjectBa-Ga-Ge alloysen_US
dc.subjectBaGaGe合金zh_TW
dc.subjectthermoelectrical performanceen_US
dc.subjectfigure of meriten_US
dc.subjectarc meltingen_US
dc.subjectvacuum hot-pressingen_US
dc.subjectclathrate structureen_US
dc.subject熱電特性zh_TW
dc.subject熱電優值zh_TW
dc.subject熱壓zh_TW
dc.subject真空電弧熔煉zh_TW
dc.subject晶籠結構zh_TW
dc.title以電弧熔煉法製備高熱電優值N型鋇鎵鍺合金與其真空熱壓後之熱電表現zh_TW
dc.titleThe preparation of high figure-of-merit N-type BaGaGe alloys by arc-melting and their thermoelectric performance after the vacuum hot-pressing treatmenten_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.