Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10570
DC FieldValueLanguage
dc.contributor顏秀崗zh_TW
dc.contributor黃何雄zh_TW
dc.contributor.advisor汪俊延zh_TW
dc.contributor.author潘信良zh_TW
dc.contributor.authorPan, Xin-Liangen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:45:31Z-
dc.date.available2014-06-06T06:45:31Z-
dc.identifierU0005-0108200703033000zh_TW
dc.identifier.citation1. I.J. Polmear, Light Alloy 3rd ed., Arnold, London, pp. 17-18 (1995). 2. D. R. Lide:Handbook of Chemistry and Physics, 71st ed., CRC, Cleveland, (1991), pp. 8-1-8-57.. 3. M. Avedesian and H. Baker:Magnesium and magnesium alloys, ASM Specialty Handbook, ASM, Metals Park, Olio, (1999), pp. 194-210. 4. C.S. Lin, C.Y. Lee, W.C. Li, Y.S. Chen, G.N. Fang, Journal of the Electrochemical Society, 153, 2006, pp.B90. 5. M.P. Antony, V.D. Tathavadkar, C.C. Calvert, A. Jha, Metallurgical and Materials Transactions B, 32, 2001, pp.98. 6. G. Hanko, H. Antrekowitsch and P. Ebner, Recycling automotive magnesium scrap, JOM, February 54(2002), pp. 51-54. 7. K.Z. Chong and T.S. Shih, Mater. Chem. Phys., 80(2003), pp. 34-38 8. M.A. Gonzalez-nubez, P. Skeldon, G.E. Thompson and H. Karimzadeh, Corrosion, 55(1999), pp. 1136-1143. 9. C.S. Lin and S.K. Fang, J. Elecrvchem. Soc., 152(2005), pp. 54-59. 10. R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon and G.E. Thompson, Surface and Coatings Technology, Vol. 203(2009), pp. 2207-2220. 11. J.E. Gray and B Luan, Journal of Alloys and Compounds, Vol. 336(2002), pp. 88-113. 12. K. Brunelli, M. Dabala, I. Calliari and M. M agrini, Corrosion science, 47, 2005, pp.989. 13. M. Zhao, S. Wu, J. Luo, Y. Fukuda, H. Nakae, Surface and Coatings Technology, 200, 2006, pp.5407. 14. R. A. Berner, Chmical diagensis of some modem carbonate sediments, Am. J. Sci. 264(1996), pp.64-69. 15. Y. Kojima, A. Sadotomo, T. Yasue, Y. Arai, J.Ceramic Soc. Japan Int. Ed. 100(1992), pp. 1128–1135. 16. H. Roques and A. Girou Water Res. 8 (1974), pp. 907 17. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, National Association of Corrosion Engineers, Houston, 1974, pp. 139-145. 18. M.M. Reddy, G.H. Nancollas, J. Cryst. Growth, 35 (1976) 33. 19. F.C. Meldrum, S.T. Hyde, J. Cryst. Growth, 231 (2001) 544. 20. 鄭凱勵,“Mg,Al-hydrotalcite皮膜的組成結構分析及於鎂合金表面之抗腐蝕特性研究”,國立中興大學材料科學與工程研究所碩士學位論文. 21. F. Kovanda, K. Jiratova, J. Ryme and D. Kolousek, Applied Clay Science, Vol. 18 (2001), pp. 71-80. 22. M.R. Kang, H.M. Lim, S.C. Lee, S.H. Lee, K.J. Kim, Azojomo Journal of Materials Online, Vol. 1(2005) pp. 1-13. 23. J.E. Gray, B. Luan, Journal of Alloys and Compounds, 336(2002), pp. 88-113. 24. Y. Zhang, R. Dawe, Applied Geochemistry, Vol. 13(1998), pp. 177-184. 25. S.F. Shanon, J.K. Galinat, S.S. Bang, Biology and Biochemistry, Vol. 31(1999), pp. 1563-1571 26. J.L. Polo, E. Cano and J.M. Bastidas, Journal of Electroanalytical Chemistry, Vol. 537(2002), pp. 183-187. 27. Pao-Chi Chen, Clifford Y. Tai and K. C. Lee, Chem. Eng. Science, Vol. 52 (1997), pp. 4171-4177 28. Jun-Yen Uan, Bing-Lung Yu, Xin-Liang Pan, Metall. Mater. Trans. A. Vol. 39(2008), pp. 3233-3245. 29. Yuping Zhang, Richard A. Dawe, Chemical Geology, 163 (2000), pp. 129-138. 30. M.E. Berndt, W.E. Seyfried, Geochimica et Cosmochimica Acta, Vol. 63(1999), ppzh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10570-
dc.description.abstract本實驗試圖提供AZ91D 鎂合金試片一種綠色環保的硬質化成皮膜處理法。利用回收之CO2氣體制備含鈣之碳酸水溶液以做為鎂合金處理液。AZ91D鎂合金經50℃含鈣碳酸溶液化成處理2小時,其表面會形成雙層結構Calcite/Mg,Al-hydroralcite的碳酸鈣硬質層。電化學試驗得知,AZ91D鎂合金基材平均腐蝕電流密度為95 μA/cm2;而表面具碳酸鈣硬質層之AZ91D鎂合金平均腐蝕電流密度可下降至7 μA/cm2。鹽霧試驗結果顯示︰碳酸鈣硬質層經鹽霧測試12小時,試片表面出現腐蝕斑點。經300℃高溫爐熱處理去除表面水分之碳酸鈣硬質層,其硬質層在鹽霧測試192小時內,試片表面無腐蝕斑點跡象。交流阻抗試驗得知︰未經熱處理之碳酸鈣硬質層其阻抗為12000歐姆;經300℃高溫爐熱處理之碳酸鈣硬質層卻下降至7800歐姆。經300℃高溫爐熱處理前與熱處理後之碳酸鈣硬質層,其Nyquist圖皆有2個半圓和一個電感曲線。高頻區代表Calcite硬質層電容阻抗,中頻區代表Mg,Al-hydrotalcite電容阻抗,且等效模擬電路圖皆套用相同公式。由刮痕試驗可知長有碳酸鈣皮膜之AZ91D試片的摩擦力低於基材AZ91D。碳酸鈣硬質層不但可以增加AZ91D鎂合金抗腐蝕性,亦可提高AZ91D鎂合金表面耐摩耗性。zh_TW
dc.description.abstractThe study explores a green environmental protection method for the formation of Mg conversion coating.Ca2+/HCO3–aqueous solution was prepared by bubbling recycling CO2 gas through deionized water.A calcite CaCO3/Mg, Al–hydrotalcite two-layer coating was developed on Mg alloy AZ91D in a Ca2+/HCO3– aqueous solution. The electrochemical experimental results revealed that corrosion current density of the as-diecast AZ91D was 95 uA/cm2. The corrosion current density calcite CaCO3 coated sample was reduced approximately 7 uA/cm2. Results of salt spray test revealed that the as-diecast AZ91D sample surface had several corrosion-rusted regions after 12 hours of salt spray test. Calcite hard conversion coating was happened dehydration at 300℃ heat treatment, the rusted area after a 192 hour salt spray test on the calcite-coated sample was absent. Results of AC impedance tests that the calcite-coated sample capacitive resistance was 12000 ohm. The 300℃ heat treatment of calcite-coated sample capacitive resistance was reduced approximately 7800 ohm. The 300℃ heat treatment and no heat treatment of calcite-coated sample all had two capacitive resistance loop. The high frequency loop was calcite hard conversion coating of capacitive resistance. The low frequency loop was Mg, Al–hydrotalcite interlayer of capacitive resistance. Equivalent circuit for impedance spectra with the 300℃ heat treatment and no heat treatment of calcite-coated sample are same. Results of scratch test that the calcite-coated sample had low friction force than the as-diecast AZ91D. Therefore, calcite hard conversion coating protected AZ91D magnesium alloy against corrosion and reached high wear resistance.en_US
dc.description.tableofcontents摘要 Ⅰ ABSTRACT Ⅱ 總目錄 Ⅲ 表目錄 Ⅴ 圖目錄 Ⅵ 第一章 前言 1 第二章 實驗步驟與方法 6 2.1 實驗材料與試片前處理 6 2.2 HCO3–/CO32–水溶液與碳酸鈣硬質層之製備 6 2.3 熱處理條件 6 2.4 XRD分析與顯微組織觀察 7 2.5 溶液中試片表面pH值和鎂鈣離子濃度之變化量測 7 2.6 電化學極化試驗 8 2.7 鹽霧試驗 8 2.8 刮痕試驗 9 第三章 結果 13 3.1 不同浸置時間之鎂合金AZ91D試片表面之XRD分析結果 13 3.2 Ca2+/HCO3-液溶中之鎂鈣離子濃度變化和試片表面pH值變化 13 3.3 鎂合金AZ91D試片表面之碳酸鈣組織觀察 14 3.4 抗腐蝕試驗 15 3.4.1 極化曲線測試 15 3.4.2 交流阻抗測試 15 3.4.3 鹽霧測試 18 3.5 熱處理對Calcite硬質層結構和抗腐蝕能力之影響 18 3.5.1 XRD分析和顯微組織的觀察 18 3.5.2 Calcite硬質層抗腐蝕能力測試 19 3.6 熱處理對Mg,Al–hydrotalcite顯微組織的改變及抗腐蝕能力測試 21 3.7 刮痕測試結果 22 第四章 討論 52 4.1 碳酸鈣硬質層於鎂合金AZ91D表面成長過程 52 4.2 熱處理對Calcite硬質層抗腐蝕能力的影響 54 4.3 鈣離子與鎂離子對碳酸鈣形成種類的影響 56 第五章 結論 58 第六章 參考文獻 60zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0108200703033000en_US
dc.subjectMagnesium alloyen_US
dc.subject鎂合金zh_TW
dc.subjectconversion coatingen_US
dc.subjectCaCO3en_US
dc.subjectelectrochemicalen_US
dc.subject化成處理zh_TW
dc.subject碳酸鈣zh_TW
dc.subject電化學zh_TW
dc.title以Ca2+/HCO3–化成法於鎂合金表面製備Calcitic CaCO3硬質層及其抗腐蝕之研究zh_TW
dc.titleFormation of calcite hard conversion coating on Mg alloy in aqueous Ca2+/HCO3- to protect ally against corrosionen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.