Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorRay-Hua Horngen_US
dc.contributorMin-Hsueh Panen_US
dc.contributor.advisorDong-Sing Wuuen_US
dc.contributor.authorHuang, Kuan-Chiehen_US
dc.identifier.citation參考文獻 [1] T. Tedje, E. Yablonovitch, G. D. Cody, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices, vol. 31, p. 711, 1984. [2] J. Zhao, A. Wang, P. Altermatt, M. A. Green, “ Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett., vol. 66, p. 3636, 1995. [3] 杜政勳, “矽晶太陽電池技術發展介紹,” 工業材料241期, 頁111, 2007. [4] M. D. Lammert, R. J. Schwartz, “The interdigitated back contact solar cell: A silicon solar cell for use in concentrated sunlight,” IEEE Trans. Electron Devices, vol. 24, p. 337, 1977. [5] 莊嘉琛, ”太陽能工程-太陽電池篇” 全華出版社. [6] 周志鵬, ”高效率單晶矽太陽電池之結構設計與研製,” 國立雲林科技大學電子與資訊工程研究所碩士論文, (1999). [7] C. T. Sah, “Reduction of solar cell efficiency by edge defects across the back-surface-field junction: a developed perimeter model,” Solid-State Electron, vol. 24, p. 851, 1982. [8] S. Bourdais, G. Beaucarne, A. Slaoui, J. Poortmans, B. Semmache, C. Dubois, “Comparative study of rapid and classical thermal phosphorus diffusion on polycrystalline silicon thin films,” Sol. Energy Mater. Sol. Cells, vol. 65, p. 487, 2001. [9] D. Mathiot, A. Lachiq, A. Slaoui, S. Noe, J. C. Muller, C. Dubois, “Phosphorus diffusion from a spin-on doped glass source during rapid thermal annealing,” Solid-State Electron, vol. 1, p. 231, 1998. [10] J. D. Hylton, A. R. Burgers, W. C. Sinke, “Alkaline etching for reflectance reduction in multi-crystalline silicon solar cells,” J. Electrochem. Soc., vol. 151, p. 408, 2004. [11] T. Yagi, Y. Uraoka, T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells, vol. 90, p. 2647, 2006. [12] P. K. Singh, R. Kumar, M. Lal, S. N. Singh, B.K. Das, “Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions,” Sol. Energy Mater. Sol. Cells, vol. 70, p. 103, 2001. [13] H. Seidel, L. Csepregi, A. Heuberger, H. BaumgSrtel, “Anisotropic etching of crystalline silicon in alkaline solutions,” J. Electrochem. Soc., vol. 137, p. 3626, 1990. [14] E. V. Zsonyi, Z. V. Rtesy, A. Toth, “Anisotropic etching of silicon in a two-component alkaline solution,” J. Micromech. Microeng., vol. 13, p. 165, 2003. [15] D. L. King, M. E. Buck, “Experimental optimization of an anisotropic etching process for random texturization of silicon solar cells,” IEEE Trans. Electron Devices, p. 303, 1991. [16] P. Hacke, J. M. Gee, M, W, Sumner, J. Salami, “Application of a boron source diffusion barrier for the fabrication of back contact silicon solar cells,” IEEE Trans. Electron Devices, p. 1181, 2005. [17] P. Hacke, J. M. Gee, “A screen-printed interdigitated back contact cell using a boron-source diffusion barrier,” Sol. Energy Mater. Sol. Cells, vol. 88, p. 119, 2005. [18] M. Lu, S. Bowden, U. Das, M. Burrows, R. Birkmire, “Interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell,” Mater. Res. Soc. Symp. Proc., vol. 989, p. 989, 2007. [19] C. Z. Zhou, P. J. Verlinden, R. A. Crane, R. M. Swanson, “21.9% efficient silicon bifacial solar cells,” 26th PVSC IEEE, p. 287, 1997. [20] R. R. King, R. A. Sinton, R. M. Swanson, “Front and back surface fields for front contact solar cells,” Proc. IEEE, p. 538, 1988. [21] G. E. Bunea, K. E. Wilson, Y. Meydbray, M. P. Campbell, D. M. De Ceuster, “Low light performance of mono-crystalline silicon solar cells,” 4rd WCPEC IEEE, p. 1312, 2006. [22] W. P. Mulligan, R. M. Swanson, “Solar cell and method of manufacture,” U.S. Patent 7339110, 2008. [23] O. Nichiporuk, A. Kaminski, M. Lemiti, A. Fave, V. Skryshevsky, “Optimisation of interdigitated back contacts solar cells by two-dimensional numerical simulation,” Sol. Energy Mater. Sol. Cells, vol. 86, p. 517, 2005. [24] D. S. Kim, V. Meemongkolkiat, A. Ebong, B. Rounsaville, V. Upadhyaya, A. Das, A. Rohatgi, “2d-modeling and development of interdigitated back contact solar cells on low-cost substrates,” Proc. IEEE, p. 1417, 2006. [25] J. Szlufcik, S. Sivoththaman, “Low-cost industrial technologies of crystalline silicon solar cells.” 4rd WCPEC IEEE, vol. 85, p. 711, 1997. [26] A. Mohr, M. Hermle, T. Roth, S. W. Glunz , “Influence of grid finger and bus bar structure on the performance of rear-line-contacted silicon concentrator cells,” 19th EU PVSEC, p. 721, 2004. [27] P. J. Verlinden, R. M. Swanson, R. A. Sinton, R. A. Crane, C. Tilford, J. Perkins, K. Garrison, “High-efficiency, point-contact silicon solar cells for fresnel lens concentrator modules,” 23th PVSC IEEE, p. 58, 1993. [28] R. A. Sinton, P. J. Verlinden, R. A. Crane, R. M. Swanson, C. Tilford, “Large-area 21% efficient si solar cells,” 23th PVSC IEEE, p. 157, 1993. [29] K. R. McIntosh, M. J. Cudzinovic, D. D. Smith, W. P. Mulligan, R. M. Swanson, “The choice of silicon wafer for the production of low-cost rear-contact solar cells.” 3rd WCPEC IEEE, p. 971, 2003. [30] D. Rose, O. Koehler, N. Kaminar, B. Mulligan, D. King, “Mass production of pv modules with 18% total-area efficiency and high energy delivery per peak watt.” 4rd WCPEC IEEE, p. 2018, 2006. [31] 陳秉群, 林景熙, 杜政勳, 葉芳耀, “背電極矽晶太陽電池技術介紹.” 工業材料雜誌271期, p. 96, 2009. [32] C. Z. Zhou, P. J. Verlinden, R. A. Crane, R. M. Swanson, “21.9% efficient silicon bifacial solar cells.” 26th PVSC IEEE, p. 287, 1997. [33] M. I. Yernaux, C. Battochio, P. Verlinden and F. V. D. Wiele, “A one-dimensional model for the quantum efficiency of front-surface-field solar cells.” Sol. Energy Mater. Sol. Cells, vol. 13, p. 83, 1984.zh_TW
dc.description.abstract太陽能電池由於製作成本昂貴,一直無法與傳統火力發電做競爭,在本研究裡我們以低成本的旋轉塗佈擴散方式製作太陽能電池,取代一般常見的氣體擴散,並搭配模擬軟體TCAD加快開發過程。 在實驗裡,我們先以模擬軟體了解實驗變因對趨勢的變化,而模擬結果我們了解基板厚度與射極擴散深度對效率所產生的影響。而在實際製作上,我們搭配模擬結果,成功開發出轉換效率15.77 (%),開路電壓0.56 (V)、短路電流38.12 (mA/cm2)、填充因子73.12 (%)的傳統太陽能電池結構。 接著以此擴散方法,我們進行低成本的背面接觸結構製程開發,在模擬軟體裡我們初步了解此結構的趨勢:在基板條件設定,我們模擬基板載子生命週期長短與基板厚度的影響;在擴散條件設定,我們模擬射極與背面電場擴散深度的影響;在結構寬度設定,我們模擬射極、背面電場與間距的結構寬度變化,而模擬所得到的最佳轉換效率為24.06 (%),開路電壓0.59 (V)、短路電流48.92 (mA/cm2)、填充因子83.33 (%)。而在實際製作上,搭配模擬結果,我們也掌握影響背面接觸太陽能電池結構效率的因素。 在本研究裡,我們首先證實旋轉塗佈法應用在太陽能電池上的可行性,並以此方法進行低成本的背面接觸結構製程開發,在實驗過程裡,搭配模擬結果,我們對擴散條件、結構寬度設計與晶片品質進行優化,最後也得到初步的背面接觸太陽能電池製程,本研究成功以低成本的擴散方式達到開發下一世代太陽能電池的目標。zh_TW
dc.description.abstractAs the high cost of production, solar cell generation can’t complete with thermoelectricity power generation. In our research, we discuss the low-cost production of solar cell with spin-on dopant diffusion to replace the phosphorus (POCl3) diffusion along with the use of TCAD software to shorten the cycle of development time. In the experiment process, in the beginning we use the software to simulate the efficiency trend and understand the effect of base thickness and Emitter diffusion length. In the experiment progress, with the result of simulation a best result of conventional structure solar cell is achieved while efficiency = 15.77 (%)、Voc = 0.56 (V)、Jsc = 38.12 (mA/cm2)、FF = 73.12 (%). By using the method, we also develop the low-cost production of back-contact structure. In the simulation of base condition, we simulated the effect of carrier lifetime and base thickness;in diffusion condition, we simulated the effect of Emitter and BSF diffusion length;in structure design, we simulate the width effect of Emitter, BSF and Space. The best efficiency in our simulation is 24.06 (%), while Voc = 0.59 (V)、Jsc = 48.92 (mA/cm2)、FF = 83.33 (%). As to the experiment, we know the key points in the fabrication of back-contact solar cell with the simulation result. In the research, we confirm the possibility of the spin-on dopant diffusion method in the application of solar cell and use the method to develop the back-contact structure process. We optimize the design of diffusion condition, structure width and carrier lifetime and develop a novel technique to fabricate the back-contact solar cell by using the low-cost diffusion method. Finally we confirm the possibility by the low-cost diffusion method to fabricate the next generation of back-contact solar cell.zh_TW
dc.description.tableofcontents中文摘要 i Abstract ii 目錄 iii 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1 前言 1 1.2 研究背景 2 1.3 研究動機 3 第二章 理論基礎與文獻回顧 4 2.1 太陽能電池之理論基礎 4 2.1.1 太陽能電池工作原理 4 2.1.2 光電流 4 2.1.3 暗電流 5 2.1.4 開路電壓與短路電流 6 2.1.5 串聯電阻與並聯電阻之影響 7 2.2 太陽能電池轉換效率 8 2.3 影響效率之因素 8 2.4 效率提升技術 9 2.4.1 擴散形成 9 2.4.2 表面粗化 10 2.4.3 抗反射層設計 11 2.4.4 背面電場 11 2.4.5 電極設計 12 2.5 背面接觸結構文獻探討 12 第三章 研究方法與分析 14 3.1 傳統結構之元件製作流程 14 3.1.1 鹼蝕刻表面粗化 14 3.1.2 射極接面製作 14 3.1.3 背面電場製作 15 3.1.4 正面抗反射層沉積 15 3.1.5 元件邊緣漏電處理 16 3.2 背面接觸結構之元件製作流程 16 3.2.1 基板選擇 16 3.2.2 射極接面製作 17 3.2.3 背面電場製作 17 3.2.4 入光面電場製作 18 3.2.5 金屬電極結構定義 18 3.2.6 元件邊緣漏電處理 18 3.3 元件量測與分析 19 3.3.1 n & k光學量測系統 19 3.3.2 積分球量測系統 19 3.3.3 展阻量測系統 20 3.3.4 太陽能電池模擬光源量測系統 20 第四章 實驗結果與討論 22 4.1 傳統結構模擬之最佳化條件 22 4.1.1 基板厚度之分析 22 4.1.2 射極深度之分析 22 4.2 傳統結構之特性探討 23 4.2.1 擴散條件之分析 23 4.2.2 退火條件製備 23 4.2.3 抗反射層與表面粗化之分析 23 4.2.4 漏電流之分析 25 4.2.5 基板厚度之分析 25 4.2.6 點接觸之分析 26 4.3 模擬背面接觸結構之最佳化條件 26 4.3.1 基板條件之分析 26 4.3.2 射極與背面電場之分析 27 4.3.3 射極、背面電場與間距結構寬度之分析 27 4.3.4 表面復合速度之影響 28 4.4 背面接觸結構之特性探討 28 4.4.1 擴散條件之優化 28 4.4.2 製程流程之優化 29 4.4.3 結構寬度變化之分析 30 4.4.4 晶片品質對效率之影響 30 第五章 結論 31 參考文獻 33zh_TW
dc.subjectmonocrystalline solar cellen_US
dc.subjectconventional structureen_US
dc.subjectback-contact structureen_US
dc.subjectTCAD simulatoren_US
dc.titleFabrication and Characterization of Conventional and Back-Contact Structures for Monocrystalline Silicon Solar Cellsen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:材料科學與工程學系
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.