Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10600
標題: 氮化銦鎵光伏元件特性分析
Characterization of InGaN-based solar cell
作者: 吳怡宏
Wu, Ei-Hong
關鍵字: solar cell;光伏元件;InGaN;氮化銦鎵
出版社: 材料科學與工程學系所
引用: 1. Omkar Jani, Ian Ferguson, Christiana Honsberg, and Sarah Kurtz, Appl. Phys. Lett. 91, 132117(2007). 2. Carl J. Neufeld, Nikholas G. Toledo, Samantha C. Cruz, Michael Iza, Steven P. DenBaars, and Umesh K. Mishra1, Appl. Phys. Lett. 93, 143502(2008). 3. R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 94, 063505(2009) 4. X. H. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, Appl. Phys. Lett. 93, 261108(2008). 5. Jinn-Kong Sheu, Chih-Ciao Yang, Shang-Ju Tu, Kuo-Hua Chang, Ming-Lun Lee, Wei-Chih Lai, and Li-Chi Peng, IEEE Electron Device Letter 30, 225-227 (2009). 6. KRI Report No.8: Solar Cells, February 2005 7. S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode, 2nd ed. (Springer, Berlin, 2000). 8. V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V.Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J.Aderhold, O. Semchinova, and J. Garul, Phys. Status Solidi B 229, 1 (2002). 9. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002). 10. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002). 11. M. A. Green, Proceedings of the Fourth IEEE World Conference on Photovoltaic Energy Conversion, Waikoloa, USA, 7-12 May 2006 (IEEE, Piscataway, NJ, 2006), p. 15. 12. A. Luque and A. Marti, Prog. Photovoltaics 9, 73 (2001). 13. R. R. King, C. M. Fetzer, K. M. Edmondson, D. C. Law, P. C. Colter, H. L. Cotal, R. A. Sherif, H. Yoon, T. Isshiki, D. D. Krut, G. S. Kinsey, J. H. Ermer, S. Kurtz, T. Moriarty, J. Kiehl, K. Emery, W. K. Metzger, R. K. Ahrenkiel, and N. H. Karam, Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 7-11 June 2004 (WIP, Munich, Germany and ETA, Florence, Italy, 2004), p. 3587. 14. R. R. King, D. C. Law, C. M. Fetzer, R. A. Sherif, K. M. Edmondson, S.Kurtz, G. S. Kinsey, H. L. Cotal, D. D. Krut, J. H. Ermer, and N. H. Karam, Proceedings of the 20th European Photovoltaic Solar Energy Conference Barcelona, Spain, 6-10 June 2005, (WIP, Munich, Germany and ETA, Florence, Italy, 2005), p. 118. 15. A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion_(Oxford University Press, Oxford, 1992), p. 90. 16. Y. Nanishi, Y. Saito, and T. Yamaguchi, Jpn. J. Appl. Phys., Part 1 42, 2549 (2003). 17. J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, Jr., B. P. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 71, 2572 (1997). 18. P. A. Basore and D. A. Clugston, PC1D Version 5.9, University of New South Wales, Sydney, Australia, 2003. 19. M. D. Lammert and R. J. Schwartz, IEEE Trans. Electron Devices 24, 337 (1977). 20. Y. Huang, O. Jani, E. H. Park, and I. Ferguson, MRS Symposia Proceedings No. 955E, edited by C. R. Abernathy, H. Jiang, and J. M. Zavada(MRS, Warrendale, PA, 2007), pp. I07-20. 21. V. Fiorentini and F. Bernardini, Phys. Status Solidi B 216, 391 (1999). 22. H. Zhang, E. J. Miller, E. T. Yu, C. Poblenz, and J. S. Speck, Appl. Phys. Lett. 84, 4644 (2004). 23. M. E. Lin, F. Y. Huang, and H. Morkoç, Appl. Phys. Lett. 64, 2557 (1997). 24. S. J. Pearton and F. Ren, Adv. Mater. (Weinheim, Ger.) 12, 1571 (2000). 25. X. Zhang, X. Wang, H. Xiao, C. Yang, J. Ran, C. Wang, Q. Hou, and J. L. Li, J. Phys. D 40, 7335 (2007). 26. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, J. Appl. Phys. 94, 6477 (2003). 27. Y. Saito, H. Harima, E. Kurimoto, T. Yamaguchi, N. Teraguchi, A. Suzuki, T. Araki, and Y. Nanishi, Phys. Status Solidi B 234, 796 (2002). 28. A. J. Ekpunobi and A. O. E. Animalu, Superlattices Microstruct. 31, 247 (2002). 29. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983). 30. R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, Appl. Phys. Lett. 70, 1089 (1997). 31. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, Appl. Phys. Lett. 89, 111111 (2006). 32. D. Redfield, Appl. Phys. Lett. 25, 647 (1974). 33. P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett. 73, 975 (1998). 34. I. Kim, H. Park, Y. Park, and T. Kim, Appl. Phys. Lett. 73, 1634 (1998). 35. Y. H. Kim, C. S. Kim, S. K. Noh, J. Y. Leem, K. Y. Lim, B. S. O, and J. P. Song, in Materials and Devices for Optoelectronics MRS Proceedings Volume 722, edited by R. B. Wehrspohn, R. März, S. Noda, and C. Soukoulis(Materials Research Society, Pittsburgh, 2002), p. 193. 36. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 80, 4741 (2002). 37. E. A. Berkman, N. A. El-Masry, A. Emara, and S. M. Bedair, Appl. Phys. Lett. 92, 101118 (2008). 38. M. J. Bergmann, U. Ozgur, J. Casey, H. O. Everitt, and J. F. Muth, Appl. Phys. Lett. 75, 67 (1999). 39. E. Trybus, G. Namkoong, W. Henderson, S. Burnham, W. Doolitle, M. Cheung, and A. Cartwright, J. Cryst. Growth 288, 218 (2006). 40. P. King, T. Veal, C. P. Jefferson, C. McConville, H. Lu, and W. Schaff, Phys. Rev. B 75, 115312 (2007). 41. O. Jani, C. Honsberg, Y. Huang, J.-O. Song, I. Ferguson, G. Namkoong, E. Trybus, A. Doolittle, and S. Kurtz, Proceedings of the Fourth World Conference on Photovoltaic Energy Conversion, Hawaii, 7-12 May 2006. 42. X. Chen, K. D. Matthews, D. Hao, W. J. Schaff, and L. F. Eastman, Phys.Status Solidi A 205, 1103 (2008). 43. D. Holec, P. M. F. J. Costa, M. J. Kappers, and C. J. Humphreys, J. Cryst. Growth 303, 314 (2007). 44. C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, N. A. EI-Masry, and L. H. Robins, Appl. Phys. Lett. 75, 2566 (1999). 45. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 69, 1477 (1996). 46. T. Kozaki, S. Nagahama, and T. Mukai, Proc. SPIE 6485, 648503 (2007). 47. C. Skierbiszewski, P. Wiśniewski, M. Siekacz, P. Perlin, A. Feduniewicz-Zmuda, G. Nowak, I. Grzegory, M. Leszczyński, and S. Porowski, Appl. Phys. Lett. 88, 221108 (2006). 48. H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, Appl. Phys. Lett. 78, 1303 (2001). 49. M. Funato, M. Unde, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takanashi, and T. Mukai, Jpn. J. Appl. Phys., Part 2 45, L659 (2006). 50. T. Lu, C. Kao, H. Kuo, G. Huang, and S. Wang, Appl. Phys. Lett. 92, 141102 (2008). 51. M. Vazquez, C. Algora, I. Rey-Stolle, and J. R. Gonzalez, Progr. Photovoltaics 15, 477 (2007). 52. I. Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996). 53. S. Y. Karpov, 3, 16 (1998). 54. B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 93, 182107 (2008). 55. A. Tabata, L. K. Teles, L. M. R. Scolfaro, J. R. Leite, A. Kharchenko, T. Frey, D. J. As, D. Schikora, K. Lischka, J. Furthmuller, and F. Bechstedt, Appl. Phys. Lett. 80, 769 (2002).
摘要: 
本論文利用P型氮化鎵表面粗化技術,應用於提升氮化銦鎵太陽能電池之光耦合效率,所採用粗化技術包含奈米壓印技術製作週期性光子晶體孔洞結構與光輔助電化學氧化技術製作圖形化奈米多孔隙結構。在具光子晶體氮化銦鎵發光元件中,當提升在P型氮化鎵之乾式電漿蝕刻深度至0.2微米時,在顯微光激發螢光光譜分析實驗中觀察到螢光強度提升,可得知光子晶體結構在P型氮化鎵粗化製程可有效提升光取出與耦合效率。所以在蝕刻後之光子晶體試片在太陽能電池效率上高於標準試片,可得到較高之光電流輸出、較高電光功率與外部量子效率。在具奈米結構之圖型化微米孔洞與微米圓盤陣列之氮化銦鎵太陽能電池之特性量測中,可以觀察到在元件表面製作多孔隙結構可以增加入射光的吸收及耦合效率,使氮化銦鎵太陽能電池效率高於標準試片。氮化銦鎵多重量子井結構發光層波長為450nm,氮化鎵能隙寬度波長為364nm。在標準氮化銦鎵元件材料於380nm具有較高之外部量子效率,此為量子井結構吸收所致。當製作奈米多孔隙結構於P型氮化鎵表面時,可提高光耦合效率,在太陽能電池效率之頻譜響應量測中,可同時提升多重量子井中氮化銦鎵位能井與氮化鎵位障層之光吸收效應,可觀察較寬頻譜響應之波長範圍。我們成功利用光輔助電化學氧化及氧化物蝕刻製程,將微米圖型化之奈米孔洞結構應用太陽能電池元件的應用之中,藉由不同的圖型產生的奈米孔洞面積比例不同,在太陽能電池的頻譜響應中改善短波長波段之響應效率。

In this thesis, the surface roughened processes on p-type GaN layer are used to increase the light coupling efficiency for the InGaN based solar cell devices applications. The surface roughened processes consisted of the photonic crystal structures fabricated through the nano-imprinting process and the nanoporous structure fabricated through the photoeletrochemical oxidation process. In the InGaN-baed solar cell with the photonic crystal structures, the higher photoluminescence intensity was observed by increasing the dry etching depth on p-type GaN:Mg layer. The larger external quantum efficiency of the InGaN-based solar cell was measured by forming the photonic crystal structures on p-type GaN:Mg layer. In patterned nanoporous structure of the InGaN-based solar cell structure, the higher light absorption and light coupling efficiency are increased by forming the photoeletrochemical treated nanoporous structure. The energy bandgap of the InGaN/GaN multiple quantum wells (MQWs) active layers and the GaN epitaxial layers are located at 450nm and 364nm. The peak external quantum efficiency was observed at 380nm in the standard InGaN-based solar cell structure which was absorbed by the InGaN active layer. By forming the patterned nanoporous structure on p-type GaN:Mg layer, the peak wavelength of the external quantum efficiency was shifted to 370nm. The wider response wavelength range and higher external quantum efficiency of the PEC treated InGaN solar cell was observed that was caused by increasing the light absorption process in InGaN wall layer and GaN barrier layer in MQW active layer. The optimums external quantum efficiency of the InGaN-based solar cell can be obtained by increasing the nanoporous area on the mesa region.
URI: http://hdl.handle.net/11455/10600
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.