Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10608
DC FieldValueLanguage
dc.contributor武東星zh_TW
dc.contributorDong-Sing Wuen_US
dc.contributor何主亮zh_TW
dc.contributorJu-Liang Heen_US
dc.contributor.advisor張立信zh_TW
dc.contributor.advisorLi-Shin Changen_US
dc.contributor.author李哲瀚zh_TW
dc.contributor.authorLi, Che-Hanen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:45:35Z-
dc.date.available2014-06-06T06:45:35Z-
dc.identifier.citation參考文獻 1. 吳三連,”矽鍺材料之發展現況”,真空科技,十六卷四期,P36~P42。 2. 吳財福、陳裕愷、張健軒著「太陽光電能供電與照明系統綜論第二版」,全華科技圖書股份有限公司,P2-6~P2-9。 3. Yuan-Ming Chang, Ching-Liang Dai, Tsung-Chieh Cheng, Che-Wei Hsu, ”Effect of annealing temperature for Si0.8Ge0.2 epitaxial thin films,” Applied Surface Science,254(2008)3105-3109. 4. 熱電材料應用簡介, ”http://tns.ndhu.edu.tw/~ykkuo/thermoelectric.pdf.” 5. M. Strasser, R. Aigner, M. Franosch and G. Wachutka,” Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining,” Sensors and Actuators A 97-98(2002)535-542 6. J. A. Tsai, A. J. Tang, A. T. Noguchi and R. Teif : J. Electrochem.Soc. 142(1995)3220. 7. K. Sawano, Y. Hirose, S. Koh, K. Nakagawa, T. Hattori, Y. Shiraki,” Relaxation enhancement of SiGe thin layers by ion implantation into Si substrates,” Journal of Crystal Growth 251 (2003) 685–688. 8. E. V. Jelenkovic, K. Y. Tong, W. Y. Cheung, I. H. Wilson, S. P. Wong, M. C. Poon,” Low temperature doping of poly-SiGe films with boron by co-sputtering,” Thin Solid Films 368 (2000) 55-60. 9. L. K. Teh, W. K. Choi, L. K. Bera W. K. Chim,” Structural characterisation of polycrystalline SiGe thin film,”Solid-State Electronics 45(2001)1963-1966. 10. A. Matsuda,” Thin-Film Silicon —Growth Process and Solar Cell Application—,” The Japan Society of Applied Physics.43 (2004)7907-20. 11. F. Qiu, W. Shin, M. Matsumiya, N. Izu and N. Murayama,” Hydrogen Sensor Based on RF-Sputtered Thermoelectric SiGe Film,” The Japan Society of Applied Physics.42(2003)1563-1567. 12. K. Tajima, F. Qiu, W. Shin, N. Izu, I. Matsubara, N. Murayama,” Micromechanical fabrication of low-power thermoelectric hydrogen sensor,” Sensors and Actuators B 108 (2005) 973–978. 13. D. M. Rowe,”CRC Handbook of Thermoelectrics,”CRC Press Boca Raton London New York Washington,D.C. 14. Safa Kasap,”Thermoelectric effects in metals : thermocouples,”Department of Electrical Engineering University of Saskatchewan Canada. 15. 朱旭山,”熱電材料與元件之原理與應用”,電子與材料雜誌,第22期。 16. Thomson. W,”On a mechanical theory of thermoelectric currents,”Proceedings of the Royal Society of Edinburgh,91,1851. 17. Altenkirch. E.”Uber den Nutzeffect der Thermosaule,”Physikalische Zeitschrift 10,560,1909. 18. Altenkirch. E.”Elektrothermische Kalteerzeugung und Reversible Elektrische Heizung,”Physikalische Zeitschrift 12,920,1911. 19. L. H. Van Vlack, 「材料科學與工程」,第六版,李志偉、劉森源、張庭瑞譯,文京圖書有限公司,台北,1996年2月,P498。 20. T. Massalski, CD ROM: Binary Alloy Phase Diagrams, ASM International,OH,USA,1996. 21. Guo-Ping Ru, Xin-Ping Qu, Qiang Gu, Wen-Jie Qi, Bing-Zong Li,” Boron and phosphorous diffusion in ion-beam-sputtering deposited SiGe films,”Materials Letters 57(2002)921-924. 22. T. J. King and K. C. Saraswat,”A low-temperature(≦550 °C) silicon-germanium MOS thin-film transistor technology for large-area electronics,”IEDM Tech.Dig(1991)567-570. 23. J. B. Rem, M. C. V.de Leuw, J. Hollerman and J. F. Verweij,”Furnace and rapid thermal crystallization of amorphous GexSi1-x and Si for thin film transistors,”Thin Solid Films,296(1997)152-156. 24. E. V. Jelenkovic, K. Y. Tong, and Z. Sun, C. L. Mak, W. Y. Cheung,” Properties of crystallized Si1-xGex thin films deposited by sputtering,”American Vacuum Society(1997)2836-3841. 25. K. Sasaki, Y. Nabetani, H. Miyashita, T. Hata,”Heteroepitaxial growth of SiGe films and heavy B doping by ion-beam sputtering,”Thin Solid Films 369(2000)171-174. 26. Glenn G. Jernigan, Phillip E. Thompson,” The effect of Sb surfactant assisted growth on SiGe surface morphology,” Thin Solid Films 472(2005)16-19. 27. 王光伟、茹国平、张建民、曹继华、李炳宗,”濺射SiGe薄膜及其等時等溫退火效應”,半導體學報第27卷第5期,P846~P851。 28. D. Dimova-Malinovska, O. Angelov, M. Sendova-Vassileva, M. Kamenova, J.-C. Pivin,” Polycrystalline silicon thin films on glass substrate,”Thin Solid Films 451-452(2004)303-307. 29. C. Eisele, M. Berger, M. Nerding, H. P. Strunk, C. E. Nebel, M. Stutzmann,” Laser-crystallized microcrystalline SiGe alloys for thin film solar cells,”Thin Solid Films 427(2003)176-180. 30. Alfred Grill,”Cold Plasma in Materials Fabrication,”IEEE PRESS,New York,(1993)24-26. 31. 柯賢文,「表面與薄膜處理技術」,全華圖書股份有限公司,P5-4~P5-11,P8-8~P8-13。 32. 陳建人等著,「真空技術與應用」,行政院國家科學委員會精密儀器發展中心,P379~P389。 33. 羅吉宗,「薄膜科技與應用」,全華圖書股份有限公司,P2-1~P2-39。 34. 何主亮,「2004薄膜技術講義」,逢甲大學材料科學系,P73~P74。 35. Michael Quirk, Julian Serda著,羅文雄,蔡榮輝,鄭岫盈譯,「半導體製造技術」,滄海書局,台灣培生教育出版股份有限公司,P312。 36. M.Ohring,”Materials science of thin films: deposition and structured,2nd ed.,”Academic Press,San Diego,(2002)497-507. 37. J. A. Thornton,”High rate thick film growth,”Ann.Rev.Mater. Sci.,7(1977)239-260 38. Lundstrom I.,” Approaches and mechanisms to solid state based sensing,”Sens.Actuators.B-Chem(1996). 39. C.C.Liu, P.J.Hesketh, G.W.Hunter ,”Chemical microsensors,”Interface,13(2004). 40. W. Shin, M. Matsumiya, N. Izu, N. Murayama,” Hydrogen-selective thermoelectric gas sensor,” Sensors and Actuators B 93 (2003) 304–308. 41. W. Shin, M. Matsumiya, F. Qiu, N. Izu, N. Murayama,” Thermoelectric gas sensor for detection of high hydrogen concentration,” Sensors and Actuators B 97 (2004) 344–347. 42. K. Tajima, F. Qiu, W. Shin, N. Sawaguchi, N. Izu, I. Matsubara and N. Murayama,” Thermoelectric Properties of RF-Sputtered SiGe Thin Film for Hydrogen Gas Sensor,” Japanese Journal of Applied Physics, Vol. 43, No. 9A, 2004, pp. 5978–5983. 43. F. Qiu, W. Shin, M. Matsumiya, N. Izu, I. Matsubara, N. Murayama,”Miniaturization of thermoelectric hydrogen sensor prepared on glass substrate with low-temperature crystallized SiGe film,” Sensors and Actuators B 103(2004) 252–259. 44. G Beensh-Marchwicka, S Osadnik, E Procibw and W Mielcarek,” Structure and morphology of Ge(Au) sputtered films with useful Seebeck effect,”Vacuum 50(1998)207. 45. K. Tajima, W. Shin, N. Murayama, T. Itoh, N. Izu and I. Matsubara,” Preparation of Phosphorus-Doped Si0.8Ge0.2 Thermoelectric Thin Film Using RF Sputtering with Induction Coil,”Journal of the Ceramic Society of Japan 113 8(2005)558-561. 46. F. Qiu, M. Matsumiya, W. Shin, N. Izu, N. Murayama,” Investigation of thermoelectric hydrogen sensor based on SiGe film,” Sensors and Actuators B 94(2003) 152–160. 47. I. Nakamura, T. Ajiki, and M. Isomura,” Low Temperature Fabrication of Microcrystalline Silicon Germanium Films by RF Reactive Magnetron Sputtering,”Materials Research Society, Vol.910(2006). 48. I. Nakamura, T. Ajiki, H. Abe, D. Hoshi, M. Isomura,” Formation of polycrystalline SiGe thin films by the RF magnetron sputtering method with Ar–H2 mixture gases,” Vacuum 80 (2006) 712–715. 49. W. K. Choi, L. K. Teh, L. K. Bera, and W. K. Chim, A.T.S Wee and Y. X. Jie,” Microstructural characterization of rf sputtered polycrystalline silicon germanium films,” JOURNAL OF APPLIED PHYSICS,Vol91 1(2002)444-450. 50. H. Makihara, A. Tabata, Y. Suzuoki, T. Mizutani,” Effect of the hydrogen partial pressure ratio on the properties of μc-Si:H films prepared by rf magnetron sputtering,” Vacuum 59 (2000)785-791. 51. K. Fukaya, A. Tabata, T. Mizutani,” Dependence on gas pressure of μc-Si:H prepared by RF magnetron sputtering,” Vacuum 74 (2004) 561–565. 52. J. Kondo, A. Tabata, T. Kawamura, T. Mizutani,” Dependence on substrate temperature of the film structure of μc-Si:H prepared by RF magnetron sputtering,” Vacuum 66 (2002) 409–413. 53. K. Nakajima, N. Usami, K. Fujiwara, Y. Murakami, T. Ujihara, G. Sazaki, T. Shishido,” Melt growth of multicrystalline SiGe with large compositional distribution for new solar cell applications,” Solar Energy Materials & Solar Cells 72 (2002) 93–100. 54. K. Nakajima, N. Usami, K. Fujiwara, Y. Murakami, T. Ujihara, G. Sazaki, T. Shishido,” Growth and properties of SiGe multicrystals with microscopic compositional distribution for high-efficiency solar cells,” Solar Energy Materials & Solar Cells 73 (2002) 305–320. 55. N. Usami, W. Pan, K. Fujiwara, T. Ujihara, G. Sazaki and K. Nakajima,” Relationship between Device Performance and Grain Boundary Structural Configuration in a Solar Cell Based on Multicrystalline SiGe,” Japanese Journal of Applied Physics Vol. 43 No. 2B (2004)L 250–L 252.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10608-
dc.description.abstract本研究是使用射頻磁控濺鍍法於矽晶片上製備N型SiGe薄膜,靶材所採用的方式是在摻雜磷之矽靶上貼附鍺靶來濺鍍。利用改變矽鍺靶材面積比例進行薄膜成份的控制,並藉由改變基板溫度以及退火溫度之製程參數,利用場發射掃描式電子顯微鏡、化學分析電子能譜儀、二次離子質譜儀、X光繞射儀、霍爾效應量測儀以及自組裝之熱電量測系統作為分析儀器,分別量測薄膜表面形貌、橫截面、成分、結晶性質、電性以及Seebeck係數等特性。藉由此製程參數的改變,期望製備出結晶之矽鍺薄膜,並且能得到較佳之熱電性質。 由實驗之結果顯示,基板溫度由室溫增加至500°C,鍍膜速率隨之增加,但整體仍為非晶態。而薄膜之載子濃度偏低,造成電阻率不佳,但遷移率最高可達2204 cm2/V•s。此外由於缺陷能階之影響,Seebeck係數為正值,最大出現在基板溫度為300°C時之2.88 V/K,而功率因子最大值也是在300°C時之3.68×10-4 W/K2•m。另外退火溫度由600增加至800°C時,薄膜仍為非晶態,直至900°C才出現結晶性。薄膜內載子濃度同樣偏低,由於900°C時產生結晶,造成遷移率上升以及電阻率下降。但Seebeck係數最大出現在退火溫度為600°C時之0.79 V/K,而功率因子最大值也是在600°C時之3.17×10-5 W/K2•m。zh_TW
dc.description.abstractN-type silicon-germanium thin films were prepared on silicon substrates by RF magnetron sputtering process. The sputtering target was a phosphorous-doped silicon target attached with germanium pieces. The composition of the SiGe thin films were controlled by changing the ratio of the area of silicon and germanium. By changing the parameters of substrate temperature and annealing temperature, we examined the microstructure, composition, crystallinity, electrical and thermoelectric properties by field emission scanning electron microscope, X-ray photoelectric spectroscopy, secondary ion mass spectrometer, X-ray diffraction, Hall effect and Seebeck coefficient measurement. By changing the parameters, we expected to prepare crystalline SiGe thin films and to have better thermoelectric properties. The results showed that the SiGe thin films were amorphous and the deposition rate increased with increasing substrate temperature from room temperature to 500C. The carrier concentrations were very low and resulted in poor resistivity, but the carrier mobility was up to 2204 cm2/V•s. Because of the effect of defect level, the Seebeck coefficients were positive. The maximum Seebeck coefficient is 2.88 V/K and the power factor meanwhiles is 3.6810-4 W/K2•m when the substrate temperature was 300C. On the other hand, SiGe thin film was crystallized when annealed at 900C. Similarly, the carrier concentrations were very low. But the mobility increased and the resistivity decreased when the films were crystallized. The maximum Seebeck coefficient of 0.79 V/K and power factor of 3.1710-5 W/K2•m when the annealing temperature was 600 C.en_US
dc.description.tableofcontents總目次 摘要.............................................................................................................i Abstract......................................................................................................ii 總目次.......................................................................................................iii 表目次......................................................................................................vii 圖目次.....................................................................................................viii 第一章 序論 1.1 前言...............................................................................................1 1.2 研究動機與目的...........................................................................3 第二章 理論基礎與文獻回顧 2.1 熱電性質簡介...............................................................................6 2.1.1 Seebeck效應..........................................................................6 2.1.2 Peltier效應.............................................................................8 2.1.3 Thomson效應.......................................................................10 2.1.4 熱電物理性質......................................................................11 2.2 矽鍺薄膜特性.............................................................................12 2.3 製備SixGe1-x薄膜之方法............................................................14 2.3.1 化學氣相沉積法(CVD)......................................................14 2.3.2 物理氣相沉積(PVD)..........................................................16 2.3.3 再結晶法..............................................................................17 2.4 濺鍍理論.....................................................................................19 2.4.1 電漿......................................................................................19 2.4.2 濺鍍原理..............................................................................22 2.4.3 射頻濺鍍系統......................................................................23 2.4.4 磁控濺鍍系統......................................................................29 2.4.5 濺射產率..............................................................................31 2.4.6 靶材面積比例與薄膜成分之關係......................................33 2.5 薄膜沉積理論.............................................................................34 2.5.1 薄膜沉積..............................................................................34 2.5.2 薄膜微觀結構......................................................................36 2.6 氫氣感測器介紹.........................................................................39 2.7 文獻回顧.....................................................................................40 第三章 實驗方法與步驟 3.1 實驗流程.....................................................................................48 3.2 實驗材料.....................................................................................49 3.2.1 靶材......................................................................................49 3.2.2 基板......................................................................................50 3.2.3 工作氣體..............................................................................50 3.3 濺鍍系統與薄膜製備.................................................................51 3.3.1 薄膜沉積系統......................................................................51 3.3.2 薄膜製備流程......................................................................53 3.4 薄膜特性分析與量測原理.........................................................56 3.4.1 電漿分析..............................................................................56 3.4.2 薄膜成分分析......................................................................56 3.4.3 薄膜結晶性量測..................................................................57 3.4.4 薄膜微結構觀察..................................................................58 3.4.5 薄膜電性分析......................................................................58 3.4.6 薄膜熱電特性分析..............................................................60 第四章 結果與討論 4.1 改變矽鍺靶材面積比例找出最佳熱電特性之Si80Ge20比例...62 4.2 改變基板溫度對Si80Ge20薄膜特性的影響...............................70 4.2.1 薄膜厚度與沉積速率變化..................................................70 4.2.2 XRD結晶性分析.................................................................76 4.2.3 薄膜表面形貌觀察..............................................................77 4.2.4 SIMS成分分析………………....…………………………81 4.2.5 電性以及Seebeck係數變化................................................86 4.3 改變退火溫度對Si80Ge20薄膜特性的影響..............................91 4.3.1 薄膜厚度與沉積速率變化..................................................91 4.3.2 XRD結晶性分析.................................................................96 4.3.3 薄膜表面形貌觀察..............................................................97 4.3.4 SIMS成分分析…………………………………………..100 4.3.5 電性以及Seebeck係數變化..............................................104 第五章 結論........................................................................................110 參考文獻................................................................................................113 表目錄 表2.1 靶材面積與薄膜成分之計算值.................................................34 表3.1 矽靶成分表.................................................................................50 表3.2 製程參數.....................................................................................55 表3.3 退火熱處理條件參數.................................................................55 表4.1 Si1-xGex薄膜成份之計算值與量測值........................................67 表4.2 改變基板溫度之薄膜厚度與鍍膜速率.....................................74 表4.3 改變退火溫度之薄膜厚度與鍍膜速率.....................................94 表4.4 電性與熱電特性總整理...........................................................109 圖目錄 圖1.1 矽的晶體結構(a)單晶矽(b)多晶矽(c)非晶矽與懸鍵.............2 圖2.1 Seebeck效應示意圖.....................................................................7 圖2.2 Seebeck現象產生原理.................................................................7 圖2.3 Peltier效應示意圖........................................................................9 圖2.4 Peliter原理示意圖(a)金屬導體連接N型半導體(b)金屬 導體連接P型半導體...................................................................9 圖2.5 Thomson效應示意圖.................................................................10 圖2.6 鑽石立方結構.............................................................................12 圖2.7 SiGe合金相圖............................................................................12 圖2.8 直流放電形態.............................................................................21 圖2.9 正常的輝光放電管大致可分為陰極區、陽極區及輝光區.......21 圖2.10 粒子撞擊固體表面之效應.......................................................23 圖2.11 射頻濺鍍系統構造示意圖.......................................................26 圖2.12 (a)交流電壓隨著時間改變的情形(b)靶材電位隨著時間改變的情形............................................................................26 圖2.13 電漿的放電電流相對於電壓的曲線圖(a)正電壓時有過量 的電子流入(b)自然形成一負偏壓,使淨電流為零…..........27 圖2.14 兩電極板面積之示意圖...........................................................28 圖2.15 匹配網路電路示意圖...............................................................29 圖2.16 靶材表面磁力線與電力線之分佈...........................................30 圖2.17 (a)電子入射於電場與磁場垂直的方向所形成的螺旋運動 示意圖(b)電子在磁控靶面進行螺旋漂移的情形..............31 圖2.18 垂直靶材表面的動能...............................................................33 圖2.19 薄膜成長過程...........................................................................35 圖2.20 Thornton鍍膜結構模型...........................................................38 圖2.21 SiGe熱電氫氣感測器原理示意圖..........................................40 圖2.22 N型SiGe熱電材料在不同Ge含量下之ZT值表現...............41 圖3.1 整體實驗流程圖.........................................................................49 圖3.2 濺鍍系統實體圖.........................................................................52 圖3.3 濺鍍系統示意圖.........................................................................53 圖3.4 真空熱壓機實體圖.....................................................................54 圖3.5 N-type半導體之霍爾效應示意圖.............................................60 圖3.6 自組裝量測Seebeck係數實體圖..............................................61 圖4.1.a 面積比為1/24之Ge靶實體圖及XPS寬能譜圖....................63 圖4.1.b 面積比為1/12之Ge靶實體圖及XPS寬能譜圖....................64 圖4.1.c 面積比為1/8之Ge靶實體圖及XPS寬能譜圖......................65 圖4.1.d 6.2×4.5 mm Ge靶實體圖及XPS寬能譜圖............................66 圖4.2 完成所有試片後之靶材實體圖及XPS寬能譜圖....................69 圖4.3.a 基板溫度為室溫之SiGe薄膜FE-SEM橫截面圖..................71 圖4.3.b 基板溫度為100 °C之SiGe薄膜FE-SEM橫截面圖….........72 圖4.3.c 基板溫度為200 °C之SiGe薄膜FE-SEM橫截面圖….........72 圖4.3.d 基板溫度為300 °C之SiGe薄膜FE-SEM橫截面圖….........73 圖4.3.e 基板溫度為400 °C之SiGe薄膜FE-SEM橫截面圖.............73 圖4.3.f 基板溫度為500 °C之SiGe薄膜FE-SEM橫截面圖.............74 圖4.4.a 改變基板溫度與薄膜厚度之關係..........................................75 圖4.4.b 改變基板溫度與鍍膜速率之關係..........................................75 圖4.5 不同基板溫度下之OES電漿強度分析....................................76 圖4.6 基板加熱製備之SiGe薄膜XRD分析......................................77 圖4.7.a 基板溫度為室溫之SiGe薄膜表面形貌圖(200000倍)........78 圖4.7.b 基板溫度為室溫之SiGe薄膜表面形貌圖(50000倍)…......78 圖4.7.c 基板溫度100 °C之SiGe薄膜表面形貌圖............................79 圖4.7.d 基板溫度200 °C之SiGe薄膜表面形貌圖............................79 圖4.7.e 基板溫度300 °C之SiGe薄膜表面形貌圖............................80 圖4.7.f 基板溫度400 °C之SiGe薄膜表面形貌圖.............................80 圖4.7.g 基板溫度500 °C之SiGe薄膜表面形貌圖............................81 圖4.8.a 基板溫度室溫之SiGe薄膜在不同縱深之二次離子強度 .........................................................82 圖4.8.b 基板溫度100 °C之SiGe薄膜在不同縱深之二次離子強度 .........................................................83 圖4.8.c 基板溫度200 °C之SiGe薄膜在不同縱深之二次離子強度 .........................................................83 圖4.8.d 基板溫度300 °C之SiGe薄膜在不同縱深之二次離子強度 .........................................................84 圖4.8.e 基板溫度400 °C之SiGe薄膜在不同縱深之二次離子強度 .........................................................84 圖4.8.f 基板溫度500 °C之SiGe薄膜在不同縱深之二次離子強度 .........................................................85 圖4.9 不同基板溫度之Ge/Si二次離子強度比.................85 圖4.10 不同基板溫度之SiGe薄膜在不同縱深下之P濃度.......86 圖4.11 改變基板溫度與載子濃度的關係...........................................88 圖4.12 改變基板溫度與載子遷移率的關係.......................................88 圖4.13 改變基板溫度與電阻率的關係...............................................89 圖4.14 改變基板溫度與Seebeck係數的關係....................................90 圖4.15 改變基板溫度與Power factor的關係.....................................90 圖4.16.a 退火溫度為600 °C之SiGe薄膜FE-SEM橫截面圖...........92 圖4.16.b 退火溫度為700 °C之SiGe薄膜FE-SEM橫截面圖...........92 圖4.16.c 退火溫度為800 °C之SiGe薄膜FE-SEM橫截面圖...........93 圖4.16.d 退火溫度為900 °C之SiGe薄膜FE-SEM橫截面圖...........93 圖4.17.a 改變退火溫度與薄膜厚度之關係........................................94 圖4.17.b 改變退火溫度與鍍膜速率之關係........................................95 圖4.18 改變退火溫度之OES電漿分析..............................................95 圖4.19 退火之SiGe薄膜XRD分析....................................................97 圖4.20.a 退火溫度600 °C之SiGe薄膜表面形貌圖..........................98 圖4.20.b 退火溫度700 °C之SiGe薄膜表面形貌圖..........................98 圖4.20.c 退火溫度800 °C之SiGe薄膜表面形貌圖..........................99 圖4.20.d 退火溫度900 °C之SiGe薄膜表面形貌圖..........................99 圖4.21.a 退火溫度600 °C之SiGe薄膜在不同縱深之二次離子強度 ........................................................101 圖4.21.b 退火溫度700 °C之SiGe薄膜在不同縱深之二次離子強度 ........................................................101 圖4.21.c 退火溫度800 °C之SiGe薄膜在不同縱深之二次離子強度 ........................................................102 圖4.21.d 退火溫度900 °C之SiGe薄膜在不同縱深之二次離子強度 ........................................................102 圖4.22 不同退火溫度之Ge/Si二次離子強度比...............103 圖4.23 不同退火溫度之SiGe薄膜在不同縱深下之P濃度......103 圖4.24 改變退火溫度與載子濃度的關係.........................................105 圖4.25 改變退火溫度與載子遷移率的關係.....................................105 圖4.26 改變退火溫度與電阻率的關係.............................................106 圖4.27 改變退火溫度與Seebeck係數的關係..................................107 圖4.28 改變退火溫度與Power factor的關係...................................108zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.subjectthermoelectricen_US
dc.subject熱電zh_TW
dc.subjectSiGeen_US
dc.subjectthin filmsen_US
dc.subject矽鍺zh_TW
dc.subject薄膜zh_TW
dc.title以射頻磁控濺鍍法製備矽鍺熱電薄膜zh_TW
dc.titleSilicon-Germanium thermoelectric thin films prepared by RF magnetron sputteringen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.