Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10626
標題: 變擴形渠道投潭消能近似解析與3D視窗化應用
Approximate Solution of Energy Dissipation Due to Free Overfall in Expanding Channels and Its 3D Windows-Based Application
作者: 黃曼華
Huang, Man-Hua
關鍵字: 變擴形渠道;expanding channel;堰壩投潭;水躍消能效率;腹地面積;視窗化模組;free over-fall flow;energy dissipation efficiency;hinterland area;windows-based model
出版社: 土木工程學系所
引用: 1. 于志忠 (1982),「矩形擴散水跌的計算方法」,水利學報, (2):39-45。 2. 水利局 (1982),「灌溉排水工程設計」,水利局 : 341-364。 3. 王啟榮、趙益群、陳樹群 (2009),「不等寬渠道之渠槽試驗研究」,第十八屆水利工程研討會 : F11-F18。 4. 江昇峰(2001),「滯洪池設計視窗化之研發與應用」,國立中興大學土木工程學系,碩士論文。 5. 沈波 (1998),「水躍躍長理論研究」,重慶交通學院學報, 17(3):98-101。 6. 余常昭(1999),「明槽急變流理論和在水工中的應用」,清華大學出版社:182-185。 7. 易任 (1947),「渠道水力學(上冊)」,東華書局:233-235。 8. 林永森(1998),「Visual Basic 6 視窗程式設計經典實務篇」,旗立資訊出版社,台北市。 9. 林宛瑩(2007),「視窗化應用於倒V堰型出流口滯洪池設計之研究」,國立中興大學土木工程學系,碩士論文。 10. 吳宇峰、伍超、劉小兵 (2007),「漸擴散水躍躍長的研究」,水科學進展, 18(2) : 210-215。 11. 吳宇峰、劉煥芳 (2003),「水平矩形擴散水躍躍長的研究」,水利水電技術,34(11) : 51-52。 12. 吳坤哲(2004),「Sutro堰型出流口滯洪池之視窗化設計」,國立中興大學土木工程學系,碩士論文。 13. 吳寶琴、張志恒 (2001),「矩形擴散水躍水力計算新公式」,水利水電工程設計, 20(2) : 42-44。 14. 徐垚鉉、黃宏信、劉希羿、陳正炎(2009),「長延時降雨作用下之倒V堰型出流口滯洪池視窗化研究」,水保技術,4(2) : 112-122。 15. 張文倬 (2007),「擴散段水躍共軛水深近似計算」,雲南水電技術,第3期。 16. 陳正炎 (1988),「堰壩投潭水躍消能近似解析之研究」,台灣水利, 36(4) : 72-80。 17. 陳正炎 (1990),「指數形渠道之投潭水躍特性研究」,台灣水利, 38(4) : 50-60。 18. 陳正炎 (1991),「突擴形渠道之投潭水躍消能研究」,台灣水利,39(4) :48-57。 19. 陳正炎、陳威甫、蔡宗翰(2002),「視窗化滯洪池設計之研究」,中華水土保持學報,33(2) : 131-139。 20. 陳威甫(2000),「視窗化滯洪池設計之研究」,國立中興大學土木工程學系,碩士論文。 21. 陳聖文(2000),「防砂壩下游帶工佈置之試驗研究」,國立中興大學土木工程學系,碩士論文。 22. 黃世陽、吳明哲(2000),「Visual Basic 6.0 學習範本」,文魁資訊出版社,台北市。 23. 黃宏信(2010),「自由跌水作用下坡度渠流之水力特性研究」,國立中興大學土木工程學系,博士論文。 24. 黃宏信、謝俊賢、蕭品彥、陳正炎(2010),「應用VB程式語言於自由跌水視窗化之研究」,中華水土保持學報,41(2) : 99-108。 25. 張良亦 (2010),「矩形等寬渠道中渾水水躍共軛水深關係之研究」,國立成功大學水利及海洋研究所,碩士論文。 26. 張迎春 (2000),「自由臨界水躍躍後水深的探討」,水利水電科技進展,20(4) : 38-39。 27. 黃榮毅(2013),「滯洪水理特性演算模式解析與研究」,國立中興大學土木工程學系,博士論文。 28. 廖苑雅(2012),「堰壩投潭作用於漸擴形渠道之消能特性研究」,國立中興大學土木工程學系,博士論文。 29. 蕭品彥(2011),「超臨界自由跌流沖擊流場機制研究與視窗化應用」,國立中興大學土木工程學系,碩士論文。 30. Arbhabhirama, A. , and Abella, A.U. (1971). “Hydraulic jump within gradually expanding channel.” Journal of Hydraulics Division, ASCE, 97(1) : 31-42. 31. Chamani, M.R. , and Beirami, M.K. (2002). “Flow characteristics at drops.” Journal of Hydraulic Engineering, ASCE, 128(8) : 788-791. 32. Chanson, H. (1995). “Hydraulic design of stepped cascades, channels, weirs and spillway.” Pergamon, Oxford, UK. 33. Chen, J.Y., Yao, C.Y., Liao, Y.Y. , and Huang, H.S. (2008). “Impact force on downstream bed of weir by free overfall flow.” Journal of the Chinese Institute of Engineers, 31(6) : 1047-1055. 34. Frence, R.H.(1986). “Open-channel hydraulics”, McGraw-Hill book company, Inc., New York : 78-89 35. Gill, M.A. (1979). “Hydraulics of rectangular vertical drop structures.” Journal of Hydraulic Research, IAHR, 17(4) : 289-302. 36. Hager, H.W. (1985). “Hydraulic jump in non-prismatic rectangular channels.” Journal of Hydraulic Research, IAHR, 23(1) : 21-35. 37. Hager, W.H. , and Sinnider,R. (1985). “Flow characteristics of the hydraulic jump in a stilling basin with an abrupt bottom rise.” Journal of Hydraulic Research, IAHR, 23(2) : 101-113. 38. Henderson, F.M. (1972). “Open channel flow.” Macmillan Publishing Co., Inc., New York : 66-72, 198-200. 39. Herbrand, K. (1971). “Das tosbecken mit seitlicher aufweitung.” Oscar v. Miller-Institut, TU Munchen, Bericht Nr. 21. 40. Koloseus, H.J. , and Ahmad, D. (1969). “Circular hydraulic jump.” Journal of Hydraulics Division, ASCE, 95(1) : 409-422. 41. Lin, C., Hwung, W.Y., Hsien, S.C. , and Chang, K.A. (2007). “Experimental study on mean velocity characteristics of flow over vertical drop.” Journal of Hydraulic Research, 45(1) : 33-42. 42. Moore, W.L. (1943). “Energy loss at the base of a free over-fall.” Transactions, ASCE, 108 : 1343-1360. 43. Rajaratnam, N. , and Chamani, M.R. (1995). “Energy loss at drop.” Journal of Hydraulic Reserch, IAHR, 33(3) : 373-384. 44. Rajaratnam, N. , and Subramanya, K. (1968). “Hydraulic jump below abrupt symmetrical expansions.” Journal of Hydraulics Division, ASCE, 94(3) : 481-503. 45. Rand, W. (1955). “Flow geometry at straight drop spillways.” Journal of Hydraulic Engineering, ASCE, 81 : 1-13. 46. Rouse, H. (1936). “Discharge characteristics of the free overfall.” Civil Engineering, 6(4) : 257-260. 47. Subramanya, K. (1986). “Flow in open channels” McGraw-Hill book company, Inc., New York : 274-275. 48. Tokyay, N.D. , and Yidiz, D. (2007). “Characteristics of free overfall for supercritical flows.” Canadian Journal of Civil Engineering, 34(2) : 162-169. 49. White, M.P. (1943). “Discussion on energy loss at the base of a free over-fall.” Transactions, ASCE, 108 : 1361-1364.
摘要: 
本文係研究變擴形渠道之投潭水躍消能效率近似模式解析,爾後利用近似解經驗式作為演算主軸,建立一變擴形渠道堰壩投潭消能機制三維視窗化模組,以提供一快速且便捷之堰壩投潭消能效率估算與3D展示工具。近似解析所探討之水力參數包含共軛水深比ϕ、相對能量損失∆E/E_i及投潭水躍消能效率η。
研究結果近似模式與理論模式相較,其平均相對誤差δ ¯皆於可容許誤差±15%之範圍,驗證近似模式之適用性。而視窗化計算結果與前人試驗值相差甚小,顯示本文所研發之3D視窗化模組具實用性。
此外,利用近似解式分析變擴形渠道投潭水躍消能效率,獲致若水躍後前斷面寬度比μ=2、相對堰壩高H大於4.5時,漸擴形、突擴形渠道之投潭水躍消能效率η約相等;當μ=3時,則H值需大於6、μ>5時,則H值需大於8,兩者方具相同之投潭水躍消能效果。
同時,μ值固定下探討變擴形渠道堰壩投潭靜水池腹地面積A_b,則與相對堰壩高 H 呈負相關,且有A_b值呈漸擴形大於突擴形,而矩形最小,以及當H值越大時,三者間之差距越大等定性,提供參考設計用。

This paper performs the approximate modal analysis of energy dissipation by free overfall jump in expanding channels. Then, the approximate empirical solution used as a computing role to establish 3D windows-based module of energy dissipation mechanism by free overfall in expanding channels, which provides a convenient way and 3D display tool for estimating the energy dissipation efficiency in expanding channels. The hydraulic parameters of approximate modal analysis include the conjugate depth ratio ϕ, the relative energy loss ∆E/E_i , and the energy dissipation efficiency η.
From the comparison of the analyzed results between the approximate and theoretical modes, the average relative error δ ¯ is in the range of ±15% allowable errors, which shows the applicability of the approximate mode. On the other hand, the little difference between windows-based computing results and the previous experimental data also exhibits the practicality of the 3D windows-based module.
In addition, using the approximate model analysis to analyze the energy dissipation efficiency by free overfall jump in expanding channels, the energy dissipation efficiency η is almost the same for the conditions of pre-jump and post-jump cross-sectional width ratio μ=2, gradually expanding channels and abrupt enlargement channels, and relative weir height H > 4.5. The same dissipation efficiency can also be obtained for μ =3 and H > 6 , μ >5 and H > 8.
The free overfall hinterland area Ab is affected by the relative weir height H in a reverse manner under the same μ. The hinterland area Ab of free overfall flow in gradually expanding channels is greater than that of abrupt enlargement channels, while the smallest is for rectangular channels. These differences among the three channels will become significant with the increase of H.
URI: http://hdl.handle.net/11455/10626
其他識別: U0005-1406201315135800
Appears in Collections:土木工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.