Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10631
標題: 電化學方法製備鋰鐵氧化物薄膜鋰電池材料之研究
Preparation+of+lithium+iron+oxides+for+Li-ion+thin+film+batteries+by+electrochemical+method
作者: Chen, Chi-Chih
陳啟智
關鍵字: Electrolytic deposition;電化學沉積;LiFe5O8;lithium iron oxides;thin film lithium ion batteries;LiFe5O8;鋰鐵氧化合物;薄膜鋰離子電池
出版社: 材料科學與工程學系所
引用: Reference 1. V. Hippel, Dielectrics and Waves, John Wiley& Sons, New York, (1995). 2. C. J. Chen and M. Greenblatt, J. Solid State chemistry 64, 240-248 (1986). 3. P.D.Baba, G.M.Argentina, IEEE Trans. Microwave Theory Technol. 22 (1974) 654. 4. E.Bermejo, J. Chassaing, D.Bizot, M.Quarton, Mater. Sci. Engng B22 (1994) 73. 5. V.Berbenni, A.Mariniand, D.Capsoni, Z. Naturforsch. 53(a) (1993) 611. 6. J.S.Baijal, S. Phanjoubam, D.Kothari, Solid State Commun. 83 (1992) 679. 7. Hisham M. Widatallah, Clive Johnson, Frank Berry, Marek Pekala, Solid State Commun. 120 (2001) 171-175. 8. 郭佳憲, 李貴琪, 科學發展 379期 36-41頁。 9. Y L. A. de Picciotto, M. M. Thackeray, Mat. Res. Bull. 21 (1986) 583. 10. Y. T. Lee, C. S. Yoon, Y. S. Lee, and Y. K. Sun, J. Power Sources 134 (2004) 88. 11. M. Schieber, J. Inorg. Nucl. Chem. 26 (1964) 1363. 12. Bin Li, Yi Xie, Huilan Su, Yitai Qian, Xianming Liu, Solid State Ionics 120 (1999) 251-254. 13. J. L. Dormanand M. Nogues, Acta Cryst. C39 (1983) 1615. 14. W.H. Ho, S.K. Yen, J. Electrochem. Soc. A506 (2005) 152. 15. W.H. Ho, S.K. Yen, Solid-State Lett. C134 (2005) 8. 16. H.C. Liu, S.K. Yen, J. Power Source 159 (2006) 245. 17. W.H. Ho, S.K. Yen, Surf. Coat. Techol. 201 (2007) 7100. 18. H.C. Liu, S.K. Yen, J. Power Source 166 (2007) 478. 19. W.H. Ho, C.F. Li, H.C. Liu, S.K. Yen, J. Power Source 175 (2008) 897. 20. Han-Chang Liu, Wen-Hsien Ho, Ching-Fei Li, Shiow-Kang Yen, J.Electrochem. Soc.155 (12) E178-E182 (2008). 21. B.D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, Pearson Education International, (2001). 22. M.N. Obrovac, K. A. Dunlap, K. J. Sanderson and J. K. Dahn, J. Electrochem. Soc. 148(6) (2001) 576 23. 董仲霖, 顏秀崗, 國立中興大學材料與工程學系碩士學位論文, (2009) 24. Julian Morales, Luis Sanchez, Francisco Martin, Frank Berry and Xiaolin Ren, J. The Electrochemical Society, 152 (9) A1748-A1754 (2005) 25. S. Uzunova, I. Uzunov, D. Kovacheva, A. Momchilov and B. Puresheva, J. Applied Electrochemistry (2006) 36:1333-1339 26. Bui Thi Hang, Izumi Watanabe, Takayuki Doi, Shigeto Okada, Jun-Ichi Yamaki, J. Power Sources 161 (2006) 1281-1287. 27. D. Larcher, M. Masquelier, C. D. Bonnin, Y. Chabre, V. Masson, J. B. Leriche, andJ. M. Tarascon, J. Electrochem. Soc., 150, A133 (2003). 28. D. Larcher, C. D. Bonnin, R. Cortes, I. Rivals, L. Personnaz, and J. M. Tarascon, J.Electrochem. Soc., 150, A1643 (2003). 29. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nature (London),407, 496 (2000). 30. J. Morales, L. Sánchez, F. Martín, J. R. Ramos-Barrado, and M. Sánchez, Electrochim.Acta, 49, 4589 (2004).
摘要: 
The preparation of lithium iron oxides thin film on 304 stainless steel was carried out in the mixture of 0.01 M Fe(NO3)3.9H2O and 0.1 M Li(NO3) aqueous solutions for electrodes in thin film lithium-ion batteries. Through cathodic polarization tests, the optimum deposition condition was found at -1.0 V vs Ag/AgCl. LiFe5O8 and Fe2O3 were found after annealed at 250 ℃. The crystallinity was increased with annealing temperature, and the particle size was also increased from 13 nm (250 ℃) to 58 nm (450 ℃). Cyclic voltammetry (CV) measurements show oxidation peaks at 3.1 V, 2.1 V, 1.7 V and 1.1 V and reduction peaks at 1.6 V, 1.0 V and 0.62V (vs. Li/Li+), respectively. There was no obvious plateau was observed at 4.5 V-1.5 V (vs. Li/Li+). However, the plateau around 1.0 V (vs. Li/Li+) was observed by discharge tests. The compound of LiFe5O8 and Fe2O3 was suitable for anode. The LiFe5O8 doped Fe2O3 revealed better specific capacity and cyclic reversibility than pure Fe2O3. The specific capacity was decreased with increasing current density, due to the aggregation of particles and the growth of crystal.

本研究利用電化學沉積方式於0.01 M Fe(NO3)3.9H2O混合0.1 M Li(NO3)水溶液中將鋰鐵氧化合物製備於304不銹鋼基材上應用於薄膜鋰離子電池電極材料上。在陰極極化曲線探討中,最佳沈積電壓為-1.0 V。在250 ℃熱處理後生成LiFe5O8及Fe2O3的結晶,並隨著熱處理溫度增加,其結晶性亦愈高,其顆粒尺寸從13 nm (250 ℃)到58 nm (450 ℃)。半電池經循環伏安(CV)測試,氧化電位分別為3.1 V、2.1 V、1.7 V和1.1 V (vs. Li/Li+),還原電位分別為1.6 V、1.0 V和0.62 V (vs. Li/Li+)。在進行充放電時,並無明顯放電平台在4.5 V-1.5 V (vs. Li/Li+) 區間,但是在1.0 V (vs. Li/Li+) 附近有明顯放電平台,所以適合應用在負極材料。從與純Fe2O3比較上可以得知LiFe5O8 摻雜於Fe2O3可以增加電容量及循環壽命。當提高充放電電流密度電容量會明顯衰退,顯然是因為顆粒聚集及晶粒粗化所造成。
URI: http://hdl.handle.net/11455/10631
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.