Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10634
標題: 控制氧含量對鎳鈷/鎳鈷氧化物雙層薄膜之微結構與磁性質的影響
Control the oxygen content influences the microstructures and magnetic properties of NiCo/(Ni,Co)O bilayers
作者: 林逸華
Lin, Yi-Hua
關鍵字: positive exchange bias;正交換偏壓;metamagnetic transformation;超磁性轉換
出版社: 材料科學與工程學系所
引用: 第一章文獻回顧 1.The Nobel Prize in Physics 2007, Press release, The Royal Swedish Academy of Sciences. 2.The Nobel Prize in Physics 2007, Information for the public, The Royal Swedish Academy of Sciences. 3.Nicola A . Spaldin , “Magnetic Materials : Fundamentals and device applications” , (2003) 4.J. Noguee’s, D. Lederman, T. Moran, and I. K. Schuller, Phys. Rev. Lett. 76, 4624 (1996). 5.M. Kiwi, J. Mejia-Lope’ez, R. D. Portugal, and R. Ramirez, Solid State Commun. 116, 315 (2000). 6.J. Nogue’s and Ivan K. Schuller, J. Magn. Magn. Mater. 192 203-232 (1999). 7.Review: W. H. Meiklejohn, J. Appl. Phys. 33 (1962) 1328. 8.D. Mauri, H. C. Siegmann, P. S. Bagus, E. Kay, J. Appl. Phys. 62 (1987) 3047. 9.A. P. Malozemoff, Phys. Rev. B 35 (1987) 3679. 10.A. P. Malozemoff, J. Appl. Phys. 63 (1988) 3874. 11.A. P. Malozemoff, Phys. Rev. B 37 (1988) 7673. 12.N. C. Koon, Phys. Rev. Lett. 78 (1997) 4865. 13.T. C. Schulthess, W. H. Butler, Phys. Rev. Lett, 81 (1998) 4516. 14.Kentaro Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, G. Thomas, Phys. Rev. Lett. 79 (1997) 1130. 15.Kentaro Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, G. Thomas, J. Appl. Phys. 83 (1998) 6888. 16.M. Kiwi, J. Mejı´a-Lo´pez, R. Portugal, and R. Ramı´rez, Europhys. Lett. 48, 573 (1999). 17.J.L. Dormann, D. Fiorani, and E. Tronc, Adv. Chem. Phys. 98. 283 (1997). 18.C. Djurberg, P. Svedlindh, P. Nordblad, M.F. Hansen, F. Bodker 2C. Djurberg, P. Svedlindh, P. Nordblad, M.F. Hansen, F. Bodker, and S. Morup, Phys. Rev. Lett. 79, 5154 (1997); H. Mamiya, I. Nakatani, and T. Furubayashi, ibid. 80, 177 (1998); J.L. Dormann, D. Fiorani, R. Cherkaoui, E. Tronc, F. Lucari, F. D’Orazio, L. Spinu, M. Nogue`s, H. Kachkachi, and J.P. Jolivet, J. Magn. Magn. Mater. 203, 23 (1999); S. Sahoo, O. Petracic, Ch. Binek, W. Kleemann, J.B. Sousa, S. Cardoso, and P.P. Freitas, Phys. Rev. B 65, 134406 (2002); S. Sahoo, O. Petracic, W. Kleemann, P. Nordblad, S. Cardoso, and P.P. Freitas, ibid. 67, 214422 (2003). 19.X. Chen, O. Sichelschmidt, W. Kleemann, O. Petracic, Ch. Binek, J.B. Sousa, S. Cardoso, and P.P. Freitas, Phys. Rev. Lett. 89, 137203 (2002). 20.Sarbeswar Sahoo, Christian Binek, and Wolfgang Kleemann,Physical Review B 68, 174431 (2003) 21.J. Sort, B. Dieny, M. Fraune, C. Koenig, F. Lunnebach, B. Beschoten, and G. Guntherodt, Appl. Phys. Lett. 84, (2004) 3696 . 22.Haiwen Xi, T. F. Ambrose, T. J. Klemmer, R. van de Veerdonk, J. K. Howard, and Robert M. White, Phys. Rev. B 72 (2005) 024447-1. 23.S. M. Zhou, L. Sun P. C. Searson, and C. L. Chien, Phys. Rev. B 69 (2004) 024408-1. 24.Sebastiaan van Dijken, Matthew Crofton, and J. M. D. Coey, J. Magn. Magn. Mater. 290-291, (2005) 1290-1293 . 25.Vassil Skumryev, Stoyan Stoyanov, Yong Zhang, George Hadjipanayis, Dominique Givord, and Josep Nogue’s, NATURE, 423 (2003) 850 . 26.W. Thomson, Proc. Roy. Soc.,8, (1857) 546 . 27.L. H. Chen, S. Jin,T. Tiefel, and R. Ramesh, J. Mater. Res., 9, (1994) 1134 . 28.M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Pctroff, Phys. Rev. Lett. 61 (1988) 2472. 29.M. Julliere, Phys. Lett., 54A, (1975) 225 . 30.J. C. Slonezewski, Phys. Rew. B39, (1989) 6995 . 31.W. H. Meiklejohn, C. P. Bean, Phys. Rev. 102 (1956) 1413. 32.W. H. Meiklejohn, C. P. Bean Phys. Rev. 105 (1957) 904. 33.JEMS software package that is developed by Pierre Stadelmann, http://cimesg1.epfl.ch/CIOL/ems.html 34.B. Fultz and J. M. Howe: “Transmission Electron Microscopy and Diffractometry of Materials”, Springer 2002 35.Earl J. Kirkland, Advanced computing in electron in electron microscopy (1998) , p133-138. 36.FUJITSU Sci. Tech. J. 37 2 (2001) 174. 37.Alain Schuhl, Daniel Lacour, C. R. Physique 6 (2005) 945–955. 38.http://zh.wikipedia.org/w/index.php?title=%E5%B7%A8%E7%A3%81%E9%98%BB%E6%95%88%E5%BA%94&variant=zh-tw 維基百科 39.http://www.research.ibm.com/research/demos/gmr/index.html IBM Research 40. J. Nogues, J. Sort, V. Langlais, Physics Reports 422 (2005) 65–117 第二章文獻回顧 1.W. H. Meiklejohn, C. P. Bean, Phys. Rev. 102 (1956) 1413. 2.W. H. Meiklejohn, C. P. Bean Phys. Rev. 105 (1957) 904. 3.R. K. Zheng, Hui. Liu, Y. Wang, and X. X. Zhang, J. Appl. Phys. 96 (2004) 5370. 4.T. J. Moran, J. M. Gallego, I. K. Schuller, J. Appl. Phys. 78 (1995) 1887. 5.A. N. Dobrynin, D. N. levlev, K. Temst P. Lievens, J. Margueritat, J. Gonzalo, C. N. Afonso, S. Q. Zhou, A. Vantomme, E. Piscopiello, and G. Van Tendeloo, Appl. Phys. Lett. 87, (2005) 012501 . 6.J. Nogue’s, C. Leighton and Ivan K. Schuller, Phys. Rev. B 61 (2000-II) 1315. 7.X. Ke, M. S. Rzchowski, L. J. Belenky, and C. B. Eom, Appl. Phys. Lett. 84, (2004) 5458 . 8.P. J. van der Zaag, R.M. Wolf, A.R. Ball, C. Bordel, L. F. Feiner, and R. Jungblut, J. Magn. Magn. Mater. 148 (1995) 346. 9.W. C. Cain, M. H. Kryder, J. Appl. Phys. 67 (1990) 5772. 10.B. Altuncevahir and A. R. Koymen, J. Magn. Magn. Mater. 261, (2003) 424 . 11. 金重勳主編,"Handbook of Magnetic Technologies",中華民國磁性技術協會,(2002). 12.J. Nogue’s and Ivan K. Schuller, J. Magn. Magn. Mater. 192 (1999) 203-232. 13.Review: W. H. Meiklejohn, J. Appl. Phys. 33 (1962) 1328. 14.A. E. Berkowitz, and Kentaro Takano, J. Magn. Magn. Mater. 200 (1999) 552-570. 15.D. Mauri, H. C. Siegmann, P. S. Bagus, E. Kay, J. Appl. Phys. 62 (1987) 3047. 16.A. P. Malozemoff, Phys. Rev. B 35 (1987) 3679. 17.A. P. Malozemoff, J. Appl. Phys. 63 (1988) 3874. 18.A. P. Malozemoff, Phys. Rev. B 37 (1988) 7673. 19.N. C. Koon, Phys. Rev. Lett. 78 (1997) 4865. 20.T. C. Schulthess, W. H. Butler, Phys. Rev. Lett, 81 (1998) 4516. 21.Kentaro Takano, R. H. Kodama, A. E. Berkowitz, W. Cao,, J. Appl. Phys. 83 (1998) 6888. 22.Kentaro Takano, R. H. Kodama, and A. E. Berkowitz , Phys. Rev. Lett. 79 (1997) 1130. 23.T. M. Hong, Phys. Rev. B 58 (1998-1) 97. 24.M. Kiwi, J. Mejı´a-Lo´pez, R. Portugal, and R. Ramı´rez, Europhys. Lett. 48, 573 (1999). 25.M. D. Stiles, R.D. McMichael, Phys. Rev. B 59 (1999) 3722. 26.A. S. Carrico, R. E. Camley, R. L. Stamps, Phys. Rev. B 50 (1994) 13453.91 27.J. Nogue’s , D. Lederman, T. J. Moran, Ivan K. Schuller, Phys. Rev. Lett. 76. (1996) 4624. 28.Florin Radu , Hartmut Zabel , cond-mat.mtrl-sci , 0705.2055v1. 29.U. Nowak , K. D. Usadel , Phys. Rev. B 66 (2002) 014430. 30.U. Nowak, A. Misra, K. D. Usadel, J. Appl. Phys. 389 (2001) 7268. 31.P. Miltényi ,M. Gierlings , J. Keller, B. Beschoten, Phys. Rev. Lett. 84. (2000) 4224. 32.Jung-Il Hong, Titus Leo, David J. Smith, Phys. Rev. Lett., 96 (2006)117204. 33.J. Keller, P. Miltenyi, B. Bes choten, G. Guntherodt, Phys. Rev. B., 66 (2002)014431. 34.T. Mewes, R. Lopusnik, J. Fassbender, B. Hillebrands, Appl. Phys. Lett., 76 (2000)1057-1059. 35.A. Mougin, T. Mewes, M. Jung, D. Engel, Phys. Rev. B., 63 (2001)060409. 36.Cristian Papusoi, Jan Hauch, Marian Fecioru-Morariu, J. Appl. Phys., 99 (2006) 123902. 37.V. I. Nikitenko,V. S. Gornakov, A. J. Shapiro, R. D. Shull, Kai Liu, S. M. Zhou, and C. L. Chien, Phys. Rev. Lett., 84 (2000) 765. 38.M. R. Fitzsimmons and P. Yashar, Phys. Rev. Lett., 84 (2000) 3986. 39.C. Leighton, M. R. Fitzsimmons, P. Yashar, Phys. Rev. Lett., 86 (2001) 4394. 40.M. R. Fitzsimmons, C. Leighton, J. Nogue´s, A. Hoffmann, Kai Liu, C. F. Majkrzak,4J. A. Dura, J. R. Groves, Phys. Rev. B., 65 (2002) 134436. 41.F. Radu, A. Westphalen, K. Theis- Brohl, and H. Zabel, J. Phys.: Condens. Matter, 18,(2006)L29-L36. 42.JulioCamarero,Jordi Sort, Axel Homann, Jose Miguel, Phys. Rev. Lett., 95(2005)057204. 43.J. McCord et al. page unpublished. 44.J. Nogués, J. Sort, V. Langlais, B. Dieny, Int. J. Nanotechnology, 2,(2005) Nos. 1/2. 45.Dormann, J.L., Fiorani, D. Tronc, E, Adv. Chem. Phys., 98,(1997) 283–494. 46.Kodama, R.H, J. Magn. Magn. Mater., 200,(1999) 359–372. 47.Hernando, A. and González, J.M, Hyperfine Interact, 130(2000), 221–240. 48.Batlle, X. and Labarta, A, J. Phys. D:Appl. Phys., 35,(2002) R15–R42. 49.Xiao, J.Q., Jiang, J.S. and Chien, C.L., Phys. Rev. Lett., 68,(1992) ,.3749–3752. 50.Sankar, S., Berkowitz, A.E. and Smith, D.J., Phys. Rev. B, 62, (2000),14273–14278. 51.Sahoo, S, Binek, C and Kleemann, W, Phys. Rev. B, 68, (2003,)174431, 1–4. 52.Modern Magnetic Materials, R. C. O.’Handley, John Wiley and Sons, Inc. New York (2000). 53.Federica Di Iorio, University of Naples “Federico II”,(2007).92 54.W. Thomson, Proc. Roy. Soc.,8, (1857) 546 . 55.L. H. Chen, S. Jin,T. Tiefel, and R. Ramesh, J. Mater. Res., 9, (1994) 1134 . 56.Evgeny Y. Tsymbal, Department of Physics and Astronomy, University of Nebraska-Lincoln: http://physics.unl.edu/%7Etsymbal/tsymbal.html 57.C.-L. Lin, J. M. Sivertsen, and J. H. Judy, IEEE Trans. Magn. 30, 3834 (1994). 58.Douwe Monsma, Systems and Materials for Information storage (1998). 59.Magnetic Materials Center (MMC), NIMS : http://www.nims.go.jp/apfim/tutorial.html 60.林智仁,羅聖全,工業材料雜誌,201期,P.90-98,民92年9月 61.中興大學材料工程學系碩士論文,鎳鐵/鎳鐵氧化物雙層薄膜顯微結構之分析及其交換偏壓性質,劉家政,民95年。 62.中興大學材料工程學系碩士論文,奈米尺寸Co/Pt多層膜垂直異向性探討,蘇群皓,民98年。 63.B. Fultz and J. M. Howe: “Transmission Electron Microscopy and Diffractometry of Materials”, Springer 2002. 64.Earl J. Kirkland, Advanced computing in electron in electron microscopy (1998), p133-138. 65.JEMS software package that is developed by Pierre Stadelmann, http://cimesg1.epfl.ch/CIOL/ems.html 66.R. F. C. Farrow, R. F. Marks, D. Weller, G. R. Harp, T. A.Rabedeau, M. F. Toney, and S. S. P. Parkin, Mater. Sci. Eng. R. 11, 155 (1993). 67.陳力俊 等箸,材料電子顯微鏡學,國科會精儀中心 68.中興大學材料工程學系碩士論文,鎳鈷/鎳鈷氧化物雙層膜之結構與磁性質研究,劉宣吟,民98年。 69.J.I. Martın, J. Nogues, Journal of Magnetism and Magnetic Materials ,256 (2003) 449–501. 70.A. Aharoni, Introduction to the Theory of Magnetism, Oxford Science Publications, Oxford, (1996). 71.Nicola A . Spaldin , “Magnetic Materials : Fundamentals and device applications” , (2003). 72.Schulthess T C and Butler W H (1998) Phys. Rev. Lett. 81 4516. 73.Ambrose T, Sommer R L and Chien C L (1997) Phys. Rev. B 56 83. 74.Fernandez-Outon L E and O’Grady K (2005) J. Magn. Magn. Mater. 290/291 536. 75.Mewes T,NembachH, Fassbender J andHillebrandsB(2002) Phys. Rev.B 65 224423. 76.Radu F, Nefedov A, Grabis J, Nowak G, Bergmann A (2005) J. Magn. Magn. Mater.93 77.Roy S, Fitzsimmons M R, Park S, Dorn M, Petracic O, Roshchin Igor V, Li Z-P, Batlle X, Morales R, Misra A, Zhang X, Chesnel K J B, (2005) Phys. Rev. Lett. 95 047201. 78.Gruyters M (2005) Phys. Rev. Lett. 95 077204. 79.J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, Physics Reports 422 (2005) 65 – 117. 80.Jesús García-Otero, Markus Porto, José Rivas, (2000) Phys. Rev. Lett. 84 167. 81.Ivan Volkov, Maxim Chukharkin , Oleg Snigirev, J Nanopart Res (2008) 10:487–497. 82.James E. Martin, E.L. Venturini, D.L. Huber, Journal of Magnetism and Magnetic Materials 320 (2008) 2221– 2227. 83.Vassil Skumryev, Stoyan Stoyanov, Yong Zhang, NATURE 423 (2003) 852. 84.Paolo Politi, Maria Gloria Pini,PHYSICAL REVIEW B 66, 214414 (2002). 85.Pankaj Poddar, Tamar Telem-Shafir, PHYSICAL REVIEW B 66, 060403 (2002). 86.Yong Hu, An Du, JOURNAL OF APPLIED PHYSICS 102, 113911 (2007). 87.Julio Camarero, Jordi Sort, Axel Hoffmann, Bernard Dieny,Rodolfo Miranda,Josep Nogue´s, PRL 95, 057204 (2005). 88.C. Leighton,M. Song, J. Nogues, M. C. Cyrille, Ivan K. Schuller, Journal of Applied Physics 88, 344 (2000). 89.C. Leighton, M. R. Fitzsimmons, P. Yashar, A. Hoffmann,2J. Nogués, (2001) Phys. Rev. Lett. 86 4395. 第三章文獻回顧 1.中興大學材料工程學系碩士論文,鎳鈷/鎳鈷氧化物雙層膜之結構與磁性質研究,劉宣吟,民98年。 2.中興大學材料工程學系碩士論文,奈米尺寸Co/Pt多層膜垂直異向性探討,蘇群皓,民98年。 3.楊鴻昌,”最敏感的感測元件SQUID及其前瞻性應用”,物理雙月刊廿四卷五期。 4.馬振基,奈米材料科技原理及應用,全華科技圖書股份有限公司,民92年。 5.P. Grutter, H. J. Mamin, and D.Ruger, Magnetic Force Microscopy, in Scanning Tunneling Microscopy II, ed. by R. Wiesendager, H. –J. Guntherodt, Berlin: Spring, ISBN, 3-540-54555-7(1992). 6.VEECO MANUAL 7.B. D. Cullity, Elements of X-RAY Diffraction, 3rd ed, (2001). 8.B. E. Warren, X-RAY Diffraction, (1969). 第四章文獻回顧 1.K.-W. Lin, J.-Y. Guo,H.-Y. Liu, H. Ouyang, Y.-L. Chan, D.-H. Wei, J. van Lierop, JOURNAL OF APPLIED PHYSICS 103, 07C105 (2008). 2.Florin Radu, Hartmut Zabely, cond-mat,mtrl-sci 15 May (2007) 3.C. Leighton, M. Song, J.Nogues, M. C. Cyrille, Ivan K. Schuller, Chapman & Hall, , J. Appl. Phys. 88, 344(2000). 4.Sarbeswar Sahoo, Christian Binek, and Wdoglfgang Kleemann , PHYSICAL REVIEW B 68, 174431 (2003) 5.D. Z. Yang, J. Du, L. Sun, X. S. Wu, X. X. Zhang, S. M. Zhou , PHYSICAL REVIEW B 71, 144417 (2005) 6.Yong Hu ,An Du,JOURNAL OF APPLIED PHYSICS 102, 113911 (2007). 7.J. Nogues, D. Lederman, T. J. Moran, and Ivan K. Schuller PHYSICAL REVIEW L 76, 4624 (1996).
摘要: 
本實驗利用雙離子束輔助沉積系統製備鎳鈷/鎳鈷氧化物雙層膜主要討論反鐵磁層氧含量的變化(7%,8%,15%,17%)對結構和磁性的影響以及探討單層反鐵磁層 (7%,8%)的微結構變化和磁性質的影響。在改變反鐵磁氧含量的研究中我們結合了一般常見的雙層膜系統加上單層磁奈米組成系統創造出一種新的超材料系統。由X光繞射儀和高解析式穿透式電子顯微鏡分析出來的結果:在鎳鈷/鎳鈷氧化物雙層膜(7%和8%)的反鐵磁層中有鎳鈷鐵磁相會鑲嵌在反鐵磁基地裏面。
而在反鐵磁層中,我們可以知道鎳鈷鐵磁相在反鐵磁基地裏面經過場冷會提供很強的局部場,而局部場克服了反鐵磁中的自旋翻轉場,因而發現反鐵磁基地會產生有趣的超磁性行為發生,在鎳鈷/鎳鈷氧化物8%的系統中也發現反鐵磁中鐵磁相有異常的體積增加率(高達~97.9%),證實有超磁性的行為發生。另外在鐵磁-反鐵磁雙層膜界面也受到這個局部場的影響,使得反鐵磁表面自旋受到耦合,而產生的正的交換偏壓的行為。改善了原本需要大的場冷才能獲得正的交換偏壓,在新的超材料系統中,我們只要適當的控制反鐵磁層氧含量的比例,讓反鐵磁裡面生成鐵磁相,提供一個很強的局部場去耦合反鐵磁表面自旋就能獲得正的交換偏壓。

This work employed Dual Ion Beam Deposition System to prepare NiCo/NiCoO bilayer. We investigated the relationship between different oxygen contents (7%,8%,15%,17% O2/Ar), the microstructures and magnetic properties of NiCo/(Ni,Co)O bilayers and (Ni,Co)O single layers(for 7%, 8%O2/Ar). In this study, we adopted both features of the general bilayer system and magnetic nanocomposite system to create a new metematerial system. In the analyses of X-ray diffraction and high-resolution transmission electron microscopy, we discovered that ferromagnetic (FM) phase of NiCo embedded in an antiferromagnetic (AFM) matrix in the bilayer system of NiCo/NiCoO (7% and 8%O2/Ar).
Furthermore, during the field-cooling process, embedded NiCo particles within an AFM matrix, providing the strong local field to overcome the switch field of AFM spin, resulted in interesting metamagnetic transformation. And, in NiCo/NiCoO bilayer system, the volume fraction of FM phase is about 97.9% due to the metamagnetic transformation. The local field due to the embedded NiCo phase can couple with the AFM surface spin in bilayer system, which causes the interaction characteristic of FM-AFM interface to be AFM. Then a positive exchange bias was observed. Therefore, we can modulate the exchange bias in this bilayer system. In this new metematerial system, we can properly control the oxygen content to produce NiCo phase embedded in an AFM matrix, which can provide a strong local field to couple AFM surface spin, creating a positive exchange bias.
URI: http://hdl.handle.net/11455/10634
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.