Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10634
DC FieldValueLanguage
dc.contributor邱顯浩zh_TW
dc.contributorShan-Haw Chiouen_US
dc.contributor.advisor林克偉zh_TW
dc.contributor.advisorKo-Wei Linen_US
dc.contributor.author林逸華zh_TW
dc.contributor.authorLin, Yi-Huaen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:45:40Z-
dc.date.available2014-06-06T06:45:40Z-
dc.identifier.citation第一章文獻回顧 1.The Nobel Prize in Physics 2007, Press release, The Royal Swedish Academy of Sciences. 2.The Nobel Prize in Physics 2007, Information for the public, The Royal Swedish Academy of Sciences. 3.Nicola A . Spaldin , “Magnetic Materials : Fundamentals and device applications” , (2003) 4.J. Noguee’s, D. Lederman, T. Moran, and I. K. Schuller, Phys. Rev. Lett. 76, 4624 (1996). 5.M. Kiwi, J. Mejia-Lope’ez, R. D. Portugal, and R. Ramirez, Solid State Commun. 116, 315 (2000). 6.J. Nogue’s and Ivan K. Schuller, J. Magn. Magn. Mater. 192 203-232 (1999). 7.Review: W. H. Meiklejohn, J. Appl. Phys. 33 (1962) 1328. 8.D. Mauri, H. C. Siegmann, P. S. Bagus, E. Kay, J. Appl. Phys. 62 (1987) 3047. 9.A. P. Malozemoff, Phys. Rev. B 35 (1987) 3679. 10.A. P. Malozemoff, J. Appl. Phys. 63 (1988) 3874. 11.A. P. Malozemoff, Phys. Rev. B 37 (1988) 7673. 12.N. C. Koon, Phys. Rev. Lett. 78 (1997) 4865. 13.T. C. Schulthess, W. H. Butler, Phys. Rev. Lett, 81 (1998) 4516. 14.Kentaro Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, G. Thomas, Phys. Rev. Lett. 79 (1997) 1130. 15.Kentaro Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, G. Thomas, J. Appl. Phys. 83 (1998) 6888. 16.M. Kiwi, J. Mejı´a-Lo´pez, R. Portugal, and R. Ramı´rez, Europhys. Lett. 48, 573 (1999). 17.J.L. Dormann, D. Fiorani, and E. Tronc, Adv. Chem. Phys. 98. 283 (1997). 18.C. Djurberg, P. Svedlindh, P. Nordblad, M.F. Hansen, F. Bodker 2C. Djurberg, P. Svedlindh, P. Nordblad, M.F. Hansen, F. Bodker, and S. Morup, Phys. Rev. Lett. 79, 5154 (1997); H. Mamiya, I. Nakatani, and T. Furubayashi, ibid. 80, 177 (1998); J.L. Dormann, D. Fiorani, R. Cherkaoui, E. Tronc, F. Lucari, F. D’Orazio, L. Spinu, M. Nogue`s, H. Kachkachi, and J.P. Jolivet, J. Magn. Magn. Mater. 203, 23 (1999); S. Sahoo, O. Petracic, Ch. Binek, W. Kleemann, J.B. Sousa, S. Cardoso, and P.P. Freitas, Phys. Rev. B 65, 134406 (2002); S. Sahoo, O. Petracic, W. Kleemann, P. Nordblad, S. Cardoso, and P.P. Freitas, ibid. 67, 214422 (2003). 19.X. Chen, O. Sichelschmidt, W. Kleemann, O. Petracic, Ch. Binek, J.B. Sousa, S. Cardoso, and P.P. Freitas, Phys. Rev. Lett. 89, 137203 (2002). 20.Sarbeswar Sahoo, Christian Binek, and Wolfgang Kleemann,Physical Review B 68, 174431 (2003) 21.J. Sort, B. Dieny, M. Fraune, C. Koenig, F. Lunnebach, B. Beschoten, and G. Guntherodt, Appl. Phys. Lett. 84, (2004) 3696 . 22.Haiwen Xi, T. F. Ambrose, T. J. Klemmer, R. van de Veerdonk, J. K. Howard, and Robert M. White, Phys. Rev. B 72 (2005) 024447-1. 23.S. M. Zhou, L. Sun P. C. Searson, and C. L. Chien, Phys. Rev. B 69 (2004) 024408-1. 24.Sebastiaan van Dijken, Matthew Crofton, and J. M. D. Coey, J. Magn. Magn. Mater. 290-291, (2005) 1290-1293 . 25.Vassil Skumryev, Stoyan Stoyanov, Yong Zhang, George Hadjipanayis, Dominique Givord, and Josep Nogue’s, NATURE, 423 (2003) 850 . 26.W. Thomson, Proc. Roy. Soc.,8, (1857) 546 . 27.L. H. Chen, S. Jin,T. Tiefel, and R. Ramesh, J. Mater. Res., 9, (1994) 1134 . 28.M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Pctroff, Phys. Rev. Lett. 61 (1988) 2472. 29.M. Julliere, Phys. Lett., 54A, (1975) 225 . 30.J. C. Slonezewski, Phys. Rew. B39, (1989) 6995 . 31.W. H. Meiklejohn, C. P. Bean, Phys. Rev. 102 (1956) 1413. 32.W. H. Meiklejohn, C. P. Bean Phys. Rev. 105 (1957) 904. 33.JEMS software package that is developed by Pierre Stadelmann, http://cimesg1.epfl.ch/CIOL/ems.html 34.B. Fultz and J. M. Howe: “Transmission Electron Microscopy and Diffractometry of Materials”, Springer 2002 35.Earl J. Kirkland, Advanced computing in electron in electron microscopy (1998) , p133-138. 36.FUJITSU Sci. Tech. J. 37 2 (2001) 174. 37.Alain Schuhl, Daniel Lacour, C. R. Physique 6 (2005) 945–955. 38.http://zh.wikipedia.org/w/index.php?title=%E5%B7%A8%E7%A3%81%E9%98%BB%E6%95%88%E5%BA%94&variant=zh-tw 維基百科 39.http://www.research.ibm.com/research/demos/gmr/index.html IBM Research 40. J. Nogues, J. Sort, V. Langlais, Physics Reports 422 (2005) 65–117 第二章文獻回顧 1.W. H. Meiklejohn, C. P. Bean, Phys. Rev. 102 (1956) 1413. 2.W. H. Meiklejohn, C. P. Bean Phys. Rev. 105 (1957) 904. 3.R. K. Zheng, Hui. Liu, Y. Wang, and X. X. Zhang, J. Appl. Phys. 96 (2004) 5370. 4.T. J. Moran, J. M. Gallego, I. K. Schuller, J. Appl. Phys. 78 (1995) 1887. 5.A. N. Dobrynin, D. N. levlev, K. Temst P. Lievens, J. Margueritat, J. Gonzalo, C. N. Afonso, S. Q. Zhou, A. Vantomme, E. Piscopiello, and G. Van Tendeloo, Appl. Phys. Lett. 87, (2005) 012501 . 6.J. Nogue’s, C. Leighton and Ivan K. Schuller, Phys. Rev. B 61 (2000-II) 1315. 7.X. Ke, M. S. Rzchowski, L. J. Belenky, and C. B. Eom, Appl. Phys. Lett. 84, (2004) 5458 . 8.P. J. van der Zaag, R.M. Wolf, A.R. Ball, C. Bordel, L. F. Feiner, and R. Jungblut, J. Magn. Magn. Mater. 148 (1995) 346. 9.W. C. Cain, M. H. Kryder, J. Appl. Phys. 67 (1990) 5772. 10.B. Altuncevahir and A. R. Koymen, J. Magn. Magn. Mater. 261, (2003) 424 . 11. 金重勳主編,"Handbook of Magnetic Technologies",中華民國磁性技術協會,(2002). 12.J. Nogue’s and Ivan K. Schuller, J. Magn. Magn. Mater. 192 (1999) 203-232. 13.Review: W. H. Meiklejohn, J. Appl. Phys. 33 (1962) 1328. 14.A. E. Berkowitz, and Kentaro Takano, J. Magn. Magn. Mater. 200 (1999) 552-570. 15.D. Mauri, H. C. Siegmann, P. S. Bagus, E. Kay, J. Appl. Phys. 62 (1987) 3047. 16.A. P. Malozemoff, Phys. Rev. B 35 (1987) 3679. 17.A. P. Malozemoff, J. Appl. Phys. 63 (1988) 3874. 18.A. P. Malozemoff, Phys. Rev. B 37 (1988) 7673. 19.N. C. Koon, Phys. Rev. Lett. 78 (1997) 4865. 20.T. C. Schulthess, W. H. Butler, Phys. Rev. Lett, 81 (1998) 4516. 21.Kentaro Takano, R. H. Kodama, A. E. Berkowitz, W. Cao,, J. Appl. Phys. 83 (1998) 6888. 22.Kentaro Takano, R. H. Kodama, and A. E. Berkowitz , Phys. Rev. Lett. 79 (1997) 1130. 23.T. M. Hong, Phys. Rev. B 58 (1998-1) 97. 24.M. Kiwi, J. Mejı´a-Lo´pez, R. Portugal, and R. Ramı´rez, Europhys. Lett. 48, 573 (1999). 25.M. D. Stiles, R.D. McMichael, Phys. Rev. B 59 (1999) 3722. 26.A. S. Carrico, R. E. Camley, R. L. Stamps, Phys. Rev. B 50 (1994) 13453.91 27.J. Nogue’s , D. Lederman, T. J. Moran, Ivan K. Schuller, Phys. Rev. Lett. 76. (1996) 4624. 28.Florin Radu , Hartmut Zabel , cond-mat.mtrl-sci , 0705.2055v1. 29.U. Nowak , K. D. Usadel , Phys. Rev. B 66 (2002) 014430. 30.U. Nowak, A. Misra, K. D. Usadel, J. Appl. Phys. 389 (2001) 7268. 31.P. Miltényi ,M. Gierlings , J. Keller, B. Beschoten, Phys. Rev. Lett. 84. (2000) 4224. 32.Jung-Il Hong, Titus Leo, David J. Smith, Phys. Rev. Lett., 96 (2006)117204. 33.J. Keller, P. Miltenyi, B. Bes choten, G. Guntherodt, Phys. Rev. B., 66 (2002)014431. 34.T. Mewes, R. Lopusnik, J. Fassbender, B. Hillebrands, Appl. Phys. Lett., 76 (2000)1057-1059. 35.A. Mougin, T. Mewes, M. Jung, D. Engel, Phys. Rev. B., 63 (2001)060409. 36.Cristian Papusoi, Jan Hauch, Marian Fecioru-Morariu, J. Appl. Phys., 99 (2006) 123902. 37.V. I. Nikitenko,V. S. Gornakov, A. J. Shapiro, R. D. Shull, Kai Liu, S. M. Zhou, and C. L. Chien, Phys. Rev. Lett., 84 (2000) 765. 38.M. R. Fitzsimmons and P. Yashar, Phys. Rev. Lett., 84 (2000) 3986. 39.C. Leighton, M. R. Fitzsimmons, P. Yashar, Phys. Rev. Lett., 86 (2001) 4394. 40.M. R. Fitzsimmons, C. Leighton, J. Nogue´s, A. Hoffmann, Kai Liu, C. F. Majkrzak,4J. A. Dura, J. R. Groves, Phys. Rev. B., 65 (2002) 134436. 41.F. Radu, A. Westphalen, K. Theis- Brohl, and H. Zabel, J. Phys.: Condens. Matter, 18,(2006)L29-L36. 42.JulioCamarero,Jordi Sort, Axel Homann, Jose Miguel, Phys. Rev. Lett., 95(2005)057204. 43.J. McCord et al. page unpublished. 44.J. Nogués, J. Sort, V. Langlais, B. Dieny, Int. J. Nanotechnology, 2,(2005) Nos. 1/2. 45.Dormann, J.L., Fiorani, D. Tronc, E, Adv. Chem. Phys., 98,(1997) 283–494. 46.Kodama, R.H, J. Magn. Magn. Mater., 200,(1999) 359–372. 47.Hernando, A. and González, J.M, Hyperfine Interact, 130(2000), 221–240. 48.Batlle, X. and Labarta, A, J. Phys. D:Appl. Phys., 35,(2002) R15–R42. 49.Xiao, J.Q., Jiang, J.S. and Chien, C.L., Phys. Rev. Lett., 68,(1992) ,.3749–3752. 50.Sankar, S., Berkowitz, A.E. and Smith, D.J., Phys. Rev. B, 62, (2000),14273–14278. 51.Sahoo, S, Binek, C and Kleemann, W, Phys. Rev. B, 68, (2003,)174431, 1–4. 52.Modern Magnetic Materials, R. C. O.’Handley, John Wiley and Sons, Inc. New York (2000). 53.Federica Di Iorio, University of Naples “Federico II”,(2007).92 54.W. Thomson, Proc. Roy. Soc.,8, (1857) 546 . 55.L. H. Chen, S. Jin,T. Tiefel, and R. Ramesh, J. Mater. Res., 9, (1994) 1134 . 56.Evgeny Y. Tsymbal, Department of Physics and Astronomy, University of Nebraska-Lincoln: http://physics.unl.edu/%7Etsymbal/tsymbal.html 57.C.-L. Lin, J. M. Sivertsen, and J. H. Judy, IEEE Trans. Magn. 30, 3834 (1994). 58.Douwe Monsma, Systems and Materials for Information storage (1998). 59.Magnetic Materials Center (MMC), NIMS : http://www.nims.go.jp/apfim/tutorial.html 60.林智仁,羅聖全,工業材料雜誌,201期,P.90-98,民92年9月 61.中興大學材料工程學系碩士論文,鎳鐵/鎳鐵氧化物雙層薄膜顯微結構之分析及其交換偏壓性質,劉家政,民95年。 62.中興大學材料工程學系碩士論文,奈米尺寸Co/Pt多層膜垂直異向性探討,蘇群皓,民98年。 63.B. Fultz and J. M. Howe: “Transmission Electron Microscopy and Diffractometry of Materials”, Springer 2002. 64.Earl J. Kirkland, Advanced computing in electron in electron microscopy (1998), p133-138. 65.JEMS software package that is developed by Pierre Stadelmann, http://cimesg1.epfl.ch/CIOL/ems.html 66.R. F. C. Farrow, R. F. Marks, D. Weller, G. R. Harp, T. A.Rabedeau, M. F. Toney, and S. S. P. Parkin, Mater. Sci. Eng. R. 11, 155 (1993). 67.陳力俊 等箸,材料電子顯微鏡學,國科會精儀中心 68.中興大學材料工程學系碩士論文,鎳鈷/鎳鈷氧化物雙層膜之結構與磁性質研究,劉宣吟,民98年。 69.J.I. Martın, J. Nogues, Journal of Magnetism and Magnetic Materials ,256 (2003) 449–501. 70.A. Aharoni, Introduction to the Theory of Magnetism, Oxford Science Publications, Oxford, (1996). 71.Nicola A . Spaldin , “Magnetic Materials : Fundamentals and device applications” , (2003). 72.Schulthess T C and Butler W H (1998) Phys. Rev. Lett. 81 4516. 73.Ambrose T, Sommer R L and Chien C L (1997) Phys. Rev. B 56 83. 74.Fernandez-Outon L E and O’Grady K (2005) J. Magn. Magn. Mater. 290/291 536. 75.Mewes T,NembachH, Fassbender J andHillebrandsB(2002) Phys. Rev.B 65 224423. 76.Radu F, Nefedov A, Grabis J, Nowak G, Bergmann A (2005) J. Magn. Magn. Mater.93 77.Roy S, Fitzsimmons M R, Park S, Dorn M, Petracic O, Roshchin Igor V, Li Z-P, Batlle X, Morales R, Misra A, Zhang X, Chesnel K J B, (2005) Phys. Rev. Lett. 95 047201. 78.Gruyters M (2005) Phys. Rev. Lett. 95 077204. 79.J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, Physics Reports 422 (2005) 65 – 117. 80.Jesús García-Otero, Markus Porto, José Rivas, (2000) Phys. Rev. Lett. 84 167. 81.Ivan Volkov, Maxim Chukharkin , Oleg Snigirev, J Nanopart Res (2008) 10:487–497. 82.James E. Martin, E.L. Venturini, D.L. Huber, Journal of Magnetism and Magnetic Materials 320 (2008) 2221– 2227. 83.Vassil Skumryev, Stoyan Stoyanov, Yong Zhang, NATURE 423 (2003) 852. 84.Paolo Politi, Maria Gloria Pini,PHYSICAL REVIEW B 66, 214414 (2002). 85.Pankaj Poddar, Tamar Telem-Shafir, PHYSICAL REVIEW B 66, 060403 (2002). 86.Yong Hu, An Du, JOURNAL OF APPLIED PHYSICS 102, 113911 (2007). 87.Julio Camarero, Jordi Sort, Axel Hoffmann, Bernard Dieny,Rodolfo Miranda,Josep Nogue´s, PRL 95, 057204 (2005). 88.C. Leighton,M. Song, J. Nogues, M. C. Cyrille, Ivan K. Schuller, Journal of Applied Physics 88, 344 (2000). 89.C. Leighton, M. R. Fitzsimmons, P. Yashar, A. Hoffmann,2J. Nogués, (2001) Phys. Rev. Lett. 86 4395. 第三章文獻回顧 1.中興大學材料工程學系碩士論文,鎳鈷/鎳鈷氧化物雙層膜之結構與磁性質研究,劉宣吟,民98年。 2.中興大學材料工程學系碩士論文,奈米尺寸Co/Pt多層膜垂直異向性探討,蘇群皓,民98年。 3.楊鴻昌,”最敏感的感測元件SQUID及其前瞻性應用”,物理雙月刊廿四卷五期。 4.馬振基,奈米材料科技原理及應用,全華科技圖書股份有限公司,民92年。 5.P. Grutter, H. J. Mamin, and D.Ruger, Magnetic Force Microscopy, in Scanning Tunneling Microscopy II, ed. by R. Wiesendager, H. –J. Guntherodt, Berlin: Spring, ISBN, 3-540-54555-7(1992). 6.VEECO MANUAL 7.B. D. Cullity, Elements of X-RAY Diffraction, 3rd ed, (2001). 8.B. E. Warren, X-RAY Diffraction, (1969). 第四章文獻回顧 1.K.-W. Lin, J.-Y. Guo,H.-Y. Liu, H. Ouyang, Y.-L. Chan, D.-H. Wei, J. van Lierop, JOURNAL OF APPLIED PHYSICS 103, 07C105 (2008). 2.Florin Radu, Hartmut Zabely, cond-mat,mtrl-sci 15 May (2007) 3.C. Leighton, M. Song, J.Nogues, M. C. Cyrille, Ivan K. Schuller, Chapman & Hall, , J. Appl. Phys. 88, 344(2000). 4.Sarbeswar Sahoo, Christian Binek, and Wdoglfgang Kleemann , PHYSICAL REVIEW B 68, 174431 (2003) 5.D. Z. Yang, J. Du, L. Sun, X. S. Wu, X. X. Zhang, S. M. Zhou , PHYSICAL REVIEW B 71, 144417 (2005) 6.Yong Hu ,An Du,JOURNAL OF APPLIED PHYSICS 102, 113911 (2007). 7.J. Nogues, D. Lederman, T. J. Moran, and Ivan K. Schuller PHYSICAL REVIEW L 76, 4624 (1996).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10634-
dc.description.abstract本實驗利用雙離子束輔助沉積系統製備鎳鈷/鎳鈷氧化物雙層膜主要討論反鐵磁層氧含量的變化(7%,8%,15%,17%)對結構和磁性的影響以及探討單層反鐵磁層 (7%,8%)的微結構變化和磁性質的影響。在改變反鐵磁氧含量的研究中我們結合了一般常見的雙層膜系統加上單層磁奈米組成系統創造出一種新的超材料系統。由X光繞射儀和高解析式穿透式電子顯微鏡分析出來的結果:在鎳鈷/鎳鈷氧化物雙層膜(7%和8%)的反鐵磁層中有鎳鈷鐵磁相會鑲嵌在反鐵磁基地裏面。 而在反鐵磁層中,我們可以知道鎳鈷鐵磁相在反鐵磁基地裏面經過場冷會提供很強的局部場,而局部場克服了反鐵磁中的自旋翻轉場,因而發現反鐵磁基地會產生有趣的超磁性行為發生,在鎳鈷/鎳鈷氧化物8%的系統中也發現反鐵磁中鐵磁相有異常的體積增加率(高達~97.9%),證實有超磁性的行為發生。另外在鐵磁-反鐵磁雙層膜界面也受到這個局部場的影響,使得反鐵磁表面自旋受到耦合,而產生的正的交換偏壓的行為。改善了原本需要大的場冷才能獲得正的交換偏壓,在新的超材料系統中,我們只要適當的控制反鐵磁層氧含量的比例,讓反鐵磁裡面生成鐵磁相,提供一個很強的局部場去耦合反鐵磁表面自旋就能獲得正的交換偏壓。zh_TW
dc.description.abstractThis work employed Dual Ion Beam Deposition System to prepare NiCo/NiCoO bilayer. We investigated the relationship between different oxygen contents (7%,8%,15%,17% O2/Ar), the microstructures and magnetic properties of NiCo/(Ni,Co)O bilayers and (Ni,Co)O single layers(for 7%, 8%O2/Ar). In this study, we adopted both features of the general bilayer system and magnetic nanocomposite system to create a new metematerial system. In the analyses of X-ray diffraction and high-resolution transmission electron microscopy, we discovered that ferromagnetic (FM) phase of NiCo embedded in an antiferromagnetic (AFM) matrix in the bilayer system of NiCo/NiCoO (7% and 8%O2/Ar). Furthermore, during the field-cooling process, embedded NiCo particles within an AFM matrix, providing the strong local field to overcome the switch field of AFM spin, resulted in interesting metamagnetic transformation. And, in NiCo/NiCoO bilayer system, the volume fraction of FM phase is about 97.9% due to the metamagnetic transformation. The local field due to the embedded NiCo phase can couple with the AFM surface spin in bilayer system, which causes the interaction characteristic of FM-AFM interface to be AFM. Then a positive exchange bias was observed. Therefore, we can modulate the exchange bias in this bilayer system. In this new metematerial system, we can properly control the oxygen content to produce NiCo phase embedded in an AFM matrix, which can provide a strong local field to couple AFM surface spin, creating a positive exchange bias.en_US
dc.description.tableofcontents摘要I 總目錄III 圖目錄VI 表目錄XII 第一章 緒論 1 一、 前言 1 二、 磁性材料種類介紹 4 三、 交換偏壓(Exchange Bias)簡介6 四、 應用發展 7 五、 研究動機與目的 11 六、 參考文獻 13 第二章 文獻回顧與理論基礎15 一、 交換偏壓(Exchange Bias,HE)背景回顧15 二、 磁性基本定義 16 (一) 居里溫度(Curie temperature) 16 (二) 尼爾溫度(Neel Temperature) 16 (三) Blocking溫度16 三、 交換偏壓(Exchange Bias,HE)基本定義描述17 四、 早期交換偏壓(Exchange Bias,HE)理論基礎23 (一) 理想界面模型23 (二) 界面間AFM磁區壁模型25 (三) 混亂場模型26 (四) 自旋翻轉垂直界面耦合 31 (五) 未補償的界面間AFM自旋型 33 五、 近期交換偏壓(Exchange Bias,HE)研究模型 (一) Domain State Model36 (二) 磁滯曲線不對稱的磁化翻轉行為40 (三) 方位角與交換偏壓的關係46 (四) 利用(AMR)異向性磁阻探討磁翻轉不對稱的行為49 六、 正交換偏壓的簡單機制 53 七、 鐵磁粒子鑲嵌在反鐵磁基地對交換偏壓的影響57 (一)粒子基本特性 (二)粒子間交互作用(Dipolar Interaction)58 (三)粒子-基地交互作用(particle-matrix interaction)65 八、 交換偏壓之應用72 (一) 常磁阻(OMR) 73 (二) 異向性磁阻(AMR) 73 (三) 巨磁阻(GMR) 74 (四) 穿隧磁阻(TMR) 77 (五) 磁阻式隨機記憶體(MRAM) 78 九、 場發射穿透式電子顯微鏡原理 80 (一) 高分辨電子顯微技術81 (二) 奈米微區EDS技術83 (三) 電子能量過濾電鏡技術84 十、multislice method 基礎理論85 十一、參考文獻90 第三章 實驗方法94 一、 實驗步驟 94 二、 薄膜製備 95 三、 高解析式穿透式電子顯微鏡(HRTEM) 95 四、 超導量子干涉儀 98 五、 原子力顯微鏡原理 99 六、 磁力顯微鏡原理 101 七、電性量測 102 八、X光繞射儀103 九、 Multislice分析104 十、 參考文獻105 第四章 結果與討論106 一、 X-ray微結構分析107 (一) NiCo & NiCoO單位晶胞的結構107 (二) NiCo 8%,15% 的微結構分析108 (三)單層膜NiCoO 7%,8%;雙層膜7%,17%的微結構分析108 二、 HRTEM微結構分析109 (一) NiCo&NiCoO phase的判定方法109 (二) NiCo/NiCoO 8% & 15% O2/Ar HRTEM分析110 (三) NiCo/NiCoO 7% & 17% O2/Ar HRTEM分析114 (四) 單層NiCoO 7% & 8% O2/Ar HRTEM分析117 三、 磁滯曲線與磁阻曲線的磁性質分析119 (一) 場冷2T,溫度5K:探討不同氧含量對磁性質的影響119 (二) 場冷0.5T,溫度77K:探討不同氧含量對磁性質的影響126 (三) 改變場冷大小探討單層反鐵磁層NiCoO 7%8%O2/Ar的磁性質132 (四) 估算NANOCOMPOSITE SYSTEM異常磁化量增加的行為136 四、 EDS和EELS成分分析140 (一) 低氧含量(7% & 8%)雙層膜EELS分析 140 (二) 高氧含量(15% &17%)雙層膜EDS分析143 五、薄膜電性量測144 (一) 探討雙層膜(7% ,8%,15% 17% O2/Ar)片電阻的變化144 (二) 探討單層膜(7% ,8% O2/Ar)片電阻的變化145 六、AFM及MFM表面性質量測146 七、參考文獻150 第五章 結論151zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.subjectpositive exchange biasen_US
dc.subject正交換偏壓zh_TW
dc.subjectmetamagnetic transformationen_US
dc.subject超磁性轉換zh_TW
dc.title控制氧含量對鎳鈷/鎳鈷氧化物雙層薄膜之微結構與磁性質的影響zh_TW
dc.titleControl the oxygen content influences the microstructures and magnetic properties of NiCo/(Ni,Co)O bilayersen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:材料科學與工程學系
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.