Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10644
標題: 磷鉬酸/碳黑觸媒載體於鋅-空氣燃料電池之電極特性分析
Characteristics of Carbon-Based Air Electrodes Containing H3PMo12O40.xH2O for Zinc-Air Fuel Cells
作者: 鄭雁文
Cheng, Yen-Wen
關鍵字: Zinc-air fuel cells;鋅-空氣燃料電池;H3PMo12O40/CB;磷鉬酸/碳黑
出版社: 材料科學與工程學系所
引用: [1] W. Ostwald, Z. Elektrotech. Electrochem. 4 (1894) 122. [2] J.H. Hirschenhofer, D.E. Stauffer, R.R. Engleman and M.G. Klett, ″Fuel Cell Handbook 4th Edition″, U. S. Department of Commerce, Springfield, VA (1998). [3] 黃鎮江,″燃料電池″,全華科技圖書公司,2005。 [4] 衣寶廉,″燃料電池-原理與應用″,五南圖書出版社,2005。 [5] 熊居政,″奈米化白金觸媒在燃料電池之電極材料上佈置方法及電化學測試之研究″,碩士論文,中國文化大學材料科學與製造研究所,2004。 [6] C. Rayment and S. Sherwin,″Introduction of Fuel Cell Technology″, Department of Aerospace and Mechanical Engineering University of Notre Dame, (2003)。 [7] 張雲朋,″由空氣產生電能的新能源-鋅空氣燃料電池″,科學發展,367期,2003。 [8] J. Lamminen, J. Kivisaari, M.J. Lampinen, M. Viitanen, J. Vuorisalo, J. Electrochem. Soc. 138 (1991) 905. [9] D. Linden,″Handbook of Batteries″, McGraw-Hill, New York (1994). [10] C. Cachet, U. Stroder, R. Wiart, Electrochimi. Acta 27 (1982) 903. [11] R. Othman, J. Power Sources 103 (2001) 34. [12] C.L. Mantell, ″Batteries and Energy Systems″, McGraw-Hill, New York (1983). [13] M. Yoshino, S. Noya, A. Hanabusa, N. Yanagihara, J. Power Sources (1992). [14] A. Hanabusa, S. Noya, M. Yoshino, N. Yanagihara, J. Power Sources (1992) 259. [15] Z. Wei, W. Huang, S. Zhang, J. Tan, J. Power Sources 91 (2000) 83. [16] M. Schimpf,″Rechargeable zinc-air batteries market and technology overview″, Southcon/95 Conference Record (1995) 30. [17] L.M. Baugh, F.L. Tye, N.C. White, ″Power Sources 9, Proceedings of the 13th International Power Sources Symposium″, Academic Press, London (1983) 303. [18] Y. Ein-Eli, M. Auiant, D. Starosvetsky, J. Power Sources 114 (2003) 330. [19] 鄭慧雯,″鋅空氣電池之放電特性與鋅陽極回收研究″,碩士論文,國立清華大學材料工程研究所,2001。 [20] Z. Wei, H. Guo, Z. Tang, Acta Phys. Chim. Sinica 12 (1996) 1022. [21] C.A. Vincent, Thomso Litho Ltd., East Kilbrid, Scotland (1984) 98. [22] J.R. Goldstein and A.C.C. Tseung, Nature 869 (1969) 222. [23] X.L. Wang, H.M. Zhang, J.L. Zhang and H.F. Xu, Electrochimi. Acta 51 (2006) 4909. [24] X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao and J. Yu, J. Power Sources 79 (1999) 75. [25] S. Escribano, J.F. Blachot, J. Eth’eve, A. Morin and R. Mosdale, J. Power Sourse 156 (2006) 8. [26] Y.H. Pai, J.H. Ke, H.F. Huang, C.M. Lee, J.M. Zen, and F.S. Shieu, J. Power Sourse 161 (2006) 275. [27] X. Zang and Z. Shen, Fuel 81 (2002) 2199. [28] C. Lim and C.Y. Wang, J. Power Sourse 113 (2003) 145. [29] G. Karimi and X. Li, J. Power Sourse 140 (2005) 1. [30] X. Ren and S. Gottesfeld, J. Electrochem. Soc. 148 (2001) A87. [31] U. Pasaogullari and C.Y. Wang, J. Electrochem. Soc. 151 (2004) A399. [32] N. Djilali and D.Lu, Int. J. Therm. Sci. 41 (2002) 29. [33] J. Chen, T. Matsuura and M. Hori, J. Power Sourse 131 (2004) 155. [34] S. Lister and G. McLean, J. Power Sourse 130 (2004) 61. [35] D. Bevers, R. Rogers and M. V. Bradke, J. Power Sourse 63 (1996) 193. [36] V.A. Pagnian, E.A. Ticianell and, E.R. Gonzalez, J. Appl. Electrochem. 26 (1996) 297. [37] L. Giorgi, E. Antolini, A. Pozio and E. Passalacqua, Electrochimi. Acta 43 (1998) 3675. [38] C. Lim and C.Y. Wang, Electrochimi. Acta 49 (2004) 4149. [39] D.S. Chan and C.C. Wang, J. Power Sourse 50 (1994) 163. [40] J. Benziger, J. Nehlsen, D. Blackwell, T. Brenan and J. Itescu, J. Membrane Sci. 261 (2005) 98. [41] M.S. Wilson, J. A. Valerio and S. Gottesfeld, Electrochimi. Acta 40 (1995) 355. [42] G.S. Kimar, M. Raja, and S. Parthasarathy, Electrochimi. Acta 40 (1995) 285. [43] M.S. Willon,U. S. Pat. No.5, 234 (1993) 777. [44] R. O’Hayre, S.J. Lee, S.W. Cha and F.B. Prinz, J. Power Sourse 109 (2002) 483. [45] D. Gruber, N. Ponath and J. M’uller, Electrochimi. Acta 51 (2005) 701. [46] S. Litster and G. McLean, J. Power Sourse 130 (2004) 61. [47] I. Yurii, Y.I. Matator-Meytal and M. Sheintuch, Ind. Eng. Chem. Res. 37 (1998) 309. [48] S. Muller, F. Holzer, O. Haas and C. Schlatter, Chimia 49 (1995) 27. [49] M. Hayashi, H. Uemura, K. Shimanoe, N. Miura and N. Yamazoe, Electrochem Solid-State Lett. 268 (1998) 6. [50] Z. Liu, Z. Li, Chin. J. Power Sources 17 (1993) 7. [51] S. Siu, J.W. Evans, J. Electrochem. Soc. 144 (1997) 2711. [52] 唐宏怡,″空氣極與鋅電極研發″,1999年鋅空氣電池技術及其在電動車的應用研討會,台灣台北,1999。 [53] W.G. Sunu and D.N. Bennion, J. Electrochem . Soc. 127 (1980). [54] P.C. Foller, J. Apple. Electrochem. 527 (1986) 16. [55] 黃秋萍,″燃料電池的極板結構控制與特性檢測技術″,工業材料,223期,2005。 [56] J.O.M. Bockris and T. Otagawa , J. Electrochem. Soc. 290 (1984) 131. [57] F.R. Mclarnon and E.J. Cairns, J. Appl. Electrochem. 645 (1991) 138. [58] 劉霖錡,″鋅空氣電池空氣極的製備與性能″,逢甲大學碩士論文,2003。 [59] 葉信宏,李文錦,王宏杰,″工業材料″,146期,1999。 [60] M. Bursell, M. Pirjamali, Y. Kiros , Electrochimi. Acta Vol. 47 (2002) 1651. [61] L. Mao, D. Zhang, T. Sotomura, K. Nakatsu, N. Koshiba and T. Ohsaka, Electrochimi. Acta 48 (2003) 1015. [62] I.V. Kozhevnikov, J. Mol. Catal. A Chemical 262 (2007) 86. [63] V. Ramani, H.R. Kunz and J.M. Fenton, J. Membr. Sci. 232 (2004) 31. [64] J.M. Tatiboue¨ t, C. Montalescot, K. Bruckman, J. Haber and M. Che, J. Catalysis 169 (1997) 22. [65] I. Gatto, A. Sacca, A. Carbone, R. Pedicini, F. Urbani and Passalacqua, J. Power Sources 171 (2007) 540. [66] F. Cavani , Catalysis Today 41 (1998) 73. [67] I.V. Kozhevnikov, Catal. Rev. Sci. Eng. 37 (1995) 311. [68] M. Misono, T.Okuhara, Chemtech 23 (1993) 23. [69] J.J. Borras-Almenar, E. Coronado, A. Muller,″Polyoxometalate Molecular Science″,Springer 1st Edition (2003). [70] M.J. Janik, K.A. Campbell, B.B. Bardin, R.J. Davis and M. Neurock, Applied Catalysis A General 256 (2003) 51. [71] Y. Izumi, K. Matsuo, K. Urabe, J. Mol. Catal. 18(1983) 209. [72] I.V. Kozhevnikov , Applied Catalysis A General 256 (2003) 3. [73] I.V. Kozhevnikov, Chemical Reviews Vol. 98 (1998) 1. [74] E. Ayturk, H. Hamamci and G. Karakas, Green Chemistry 5 (2003) 460. [75] P. Madhusudhan Rao, A. Wolfson, S. Kababya and S. Vega, J. Catalysis 232 (2005) 210. [76] H.Y. Shen, H.L. Mao, L.Y. Ying and Q.H. Xia, J. Mol. Catal. A Chemical 276 (2007) 73. [77] L. Mingqiang and J. Xigao, Bull. Chem. Soc. Jpn. 78 (2005) 8. [78] Y.V. Geletii, A. Gueleti and I.A. Weistock, J. Mol. Catal. A Chemical 262 (2007) 59. [79] A. Sacca, A. Carbone, E. Passalacqua, A. D’Epifanio, S. Licoccia, E. Traversa, E. Sala, F. Traini and R. Ornelas, J. Power Sourse 152 (2005) 16. [80] T. Schultz, S. Zhou and K. Sundmacher, Chem. Eng. Technol., 24(12) (2001) 1223. [81] M.P. Hogarth and T.R. Ralph, Platinum Metals Rev. 46(4) (2002) 146. [82] G.M. Haugen, F. Meng, N.V. Aieta, J.L. Horan, M.C. Kuo, M.H. Frey, S.J. Hamrock, A.M. Herring, Electrochem. Solid State Lett. 10 (2007) B51. [83] V. Ramani, H.R. Kunz, J.M. Fenton, Electrochimi. Acta 50 (2005) 1181. [84] A.M. Herring, Polym. Rev. 46 (2006) 245. [85] O. Savadogo, J. Power Sources 127 (2004) 135. [86] S.M.J. Zaidi, S.D. Mikhailenko, G.P. Robertson, M.D. Guiver and S. Kaliaguine, J. Membr. Sci. 173 (2000) 17. [87] B. Bonnet, D.J. Jones, J. Roziere, L. Tchicaya and G. Alberti, Electrochem. Syst. 3 (2000) 87. [88] S. Malhotra and R.J. Datta, J. Electrochem. Soc. 144 (1997) 23. [89] M.L. Ponce, L. Prado, B. Ruffman, K. Richau, R. Mohr and S.R Nunes , J. Membr. Sci. 217 (2003) 5. [90] Y.S. Kim ,F. Wang, M. Hickner, T. Zawodzinski and J. McGrath, J. Membr. Sci. 212 (2003) 263. [91] B. Tazi and O. Savadogo, Electrochimi. Acta 45 (2000) 4329. [92] L. Li and Y.X. Wang, Chin. J. Chem. Eng. 100 (2002) 614. [93] S. Malhotra and R.J. Datta, J. Electrochem. Soc. 144 (1997) 23. [94] P. G’omez-Romero, J.A. Asensio and S.Borros, Electrochimi. Acta 50 (2005) 4715. [95] M.S. Kang, J.H. Kim, J. Won, S.H. Moon and Y.S Kang, J. Membr. Sci. 247 (2005) 127. [96] M.S. Kang, Y.J.Choi and S.H. Moon, J. Membr. Sci. 207 (2002) 157. [97] A. Anis, A.K. Banthia and S.Bandyopadhyay, J. Power Sources (2008). [98] B. Viswanathan,″Membranes for fuel cells″, National Centre for Catalysis Research, Department of Chemistry, Indian Institute of Technology Madras (2007). [99] A.S. Arico, H.Kim, I. Shulka, M.K. Ravikumar and N. Giorano, Electrochimi. Acta 39 (1994) 691. [100] A.S. Arico, E. Modica , I. Ferrara and V. Artonucci, J. Appl. Electrochem. 28 (1998) 881. [101] J.J. Lin, C.C. Chu, C.C. Chou, and F.S. Shieu, Adv. Mater 17 (2005) 301. [102] A.S. Arico, S.Srinivasan and, V. Antonucci, Fuel Cell 1(2) (2001) 133. [103] K.E. Swider and D.R. Rolison, Langmuir 15(9) (1999) 3302. [104] M. Chen and Y. Xing, Langmuir 21(20) (2005) 9334. [105] H.Y. Li, H.Z. Chen, J.Z. Sun, J. Cao, Z.L. Yang, M. Wang, Macromol Rapid Commun 24(12) (2003) 715. [106] F. Tiarks , K. Landfester and M. Antonietti, Macromol. Chem. Phys., 202(1) (2001) 51. [107] S.J. Park, K.S. Cho and S.K. Ryu, Carbon, 41(7) (2003) 1437. [108] H.J. Spinelli, Adv. Mater 10(15) (1998) 1215. [109] P. Yu, M. Pemberton and P. Plasse, J. Power Sources 144 (2005) 1. [110] Y.H. Pai, J.H. Ke, C.C. Chou, J.J. Lin, J.M. Zen, F.S. Shieu, J. Power Sources 163 (2006) 398. [111] P. Morin, B. Hamad, G. Sapaly, M.G. Carneiro Rocha, P.G. Pries de Oliveira, W.A. Gonzalez, E. Andeade Sales and N. Essayem, Applied Catalysis A General 330 (2007) 69. [112] S. Damyanova and J.L.G. Fierro, Chem. Mater. Vol. 10 (1998) 3. [113] L. Marosi, E.E. Platero, J. Cifre and C.O.Arean, J. Mater. Chem. 10 (2000) 1949. [114] D. Flaxbart,″Encyclopedia of Chemical Technology, 4th Edition″ Vol. 4 (1999) 631.
摘要: 
近年來,環保意識抬頭,全世界都投入於綠色能源的研究。由於對環境友善以及低汙染,使得太陽能、氫能與燃料電池為目前的三大研究主流。在燃料電池的研究中,鋅空氣燃料電池由於具有重量輕以及結構簡單等優點,為目前科學研究的重點之一。鋅空氣燃料電池之效能取決於其電極、電解液以及觸媒特性,因此觸媒反應效率的改善為鋅空氣燃料電池研究的重點。磷鉬酸觸媒(H3PMo12O40.xH2O;簡稱PMo12)為目前被廣泛研究的新型觸媒。目前已有相關研究發表將磷鉬酸觸媒(PMo12)應用於質子交換膜燃料電池(PEMFC)以及直接甲醇燃料電池(DMFC)之電極觸媒以提升電池效能。本論文將強氧化劑磷鉬酸觸媒(H3PMo12O40.xH2O;簡稱PMo12)應用於鋅空氣燃料電池之空氣陰極部份,探討其是否可達催化效果,進而改善鋅-空氣燃料電池之大電流放電效能、提升陰極氧氣還原速率。
本研究以含浸法將磷鉬酸/碳黑(PMo12/C)製成觸媒載體空氣陰極,並且為瞭解磷鉬酸觸媒於鋅-空氣燃料電池有否達至催化效應,將其與觸媒MnO2作一對比。接著探討其燒結溫度對於PMo12/C空氣陰極膜的影響、不同負載電流及不同電解液之下有何種性能表現。利用電化學分析儀於1大氣壓及室溫下,進行50 mA定電流放電與電池壽命測試,並以X光繞射儀(X-Ray Diffractometer, XRD)分析與場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FESEM)分析PMo12/C晶體結構及表面形貌。
研究結果發現,PMo12/C觸媒載體之空氣陰極與MnO2/C有相同的催化特性,皆可加速氧氣的還原反應,甚且有較佳的電池特性,因此證實PMo12觸媒可應用於鋅空氣燃料電池中以提升其效能。而電池測試時,供給之負載電流越大,其電池電位隨之下降,電池壽命亦變短;結果也顯示出燒結溫度會影響PMo12/C觸媒載體之結構及催化特性,由XRD及TGA/DTA分析結果得知,於375℃時結構開始逐漸變化產生另一相三氧化鉬(MoO3),而電池測試結果亦發現未熱處理有最佳的電化學行為。再者,於不同電解液下進行電池測試,結果顯示電解液為KOH時有最佳的電池電性。

In the past decades, since the rise of environmental consciousness around the world, many efforts have been devoted into the discovery and development of clean energy technologiesm. Within them, solar energy、hydrogen energy and fuel cell, which are environment-friendly and zero-polluted, are the three mainstreams. Zinc-air fuel cell is one of the focal point of fuel cell studies. The performance of zinc-air fuel cell significantly depends on the characteristic of electrode、electrolyte and catalyst. Hence, the investigation of improving the transformation rate of catalyst plays a significant role to decide the range of future application of zinc-air fuel cell. H3PMo12O40.xH2O (PMo12) catalyst was widely to be applied into various electrochemical applications. There are several references has been reported to reveal that adding phosphomolybdic acid hydrate PMo12 in the electrode of proton exchange membrane fuel cells (PEMFC) and direct methanol fuel cell (DMFC) could promote performance. Under this concept, the study aims to add H3PMo12O40.xH2O (PMo12), a strong oxidizing agent, into the cathode of zinc-air fuel cell to serve as catalyst to improve the electrocatalytical efficiency by increasing the oxygen reduction rate that can increase the current density.
The PMo12/C cathodes are prepared by liquid impregnation method and then compared with MnO2/C cathodes for analyzing the effects of PMo12/C. Thereafter, the efficiency of PMo12/C cathodes for zinc-air fuel cell in different annealing temperatures、different loading currents and different electrolytes is investigated. The discharging behavior under the steady current of 50 mA and the life time properties were measured by the Galvanostat system at 1 atm and 27 ℃. The structure and surface morphologies of PMo12/C cathodes were characterized by using X-ray diffractometer (XRD) and field emission scanning electron microscopy (FE-SEM).
According to the results, PMo12/C cathodes show the same catalysis ability as MnO2/C cathodes, but PMo12/C cathodes reveal better efficiency. Therefore, the result proves the idea that PMo12/C serves as the cathode catalyst in zinc-air fuel cell is practical. In the single cell test, the potential is going down with increasing loading current, and the life time is becoming shorter. Specifically, form the results evidences, the annealing temperature is a factor of structure and catalysis of PMo12/C. From the XRD and TGA/DTA results, we know the PMo12 structure changes into molybedenum oxide (MoO3) at 375℃. And from the single test results, it is found the best electrochemical performance on unannealing PMo12/C cathode. Moreover, in single cell test with different electrolytes, it is also found the best cell behavior with potassium hydroxide (KOH) electrolyte.
URI: http://hdl.handle.net/11455/10644
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.