Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10652
標題: 錫95/銻5無鉛焊料與熱處理之無電鍍鎳-磷/銅基材間的界面強度研究
Study on the shear strength of joints between the Sn95Sb5 solder and annealed Ni-P electroless-plated Cu substrate
作者: 林逸程
Lin, Yi-Cheng
關鍵字: Electroless Nickel;無電鍍鎳;annealing;Sn-Sb solder;shear test;退火;錫銻銲料;剪力推球測試
出版社: 材料科學與工程學系所
引用: [1] 邱碧秀,微系統封裝原理與技術,滄海書局,民93。 [2] J. D. Plummer M. D. Deal, and P.B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling, Prentice Hall, Inc, New Jersey, Chap. 2, (2001). [3] Harper C. A., Electronic Packaging and Interconnection Handbook, McGraw-Hill, Inc., Chap. 10, (1991). [4] H. H. Manko, Solders and Soldering Third Edition Handbook, McGraw-Hill, New York, p.63, (2000). [5] 胡應強、陳琪、徐敏雯、高振宏,構裝接點面面觀,工業材料期刊,187期,p.146,民91。 [6] H.-T. Lee, M.-H. Chen, H.-M. Jao, and C.-J. Hsu, Journal of Electronic Materials, 33, p.1048, (2004). [7] H.-T. Lee, H.-S. Lin, C.-S. Lee, and P.-W. Chen, Mater. Sci. Eng, A 407, p.36, (2005). [8] Hwa-Teng Lee, Shuen-Yuan Hu, Ting-Fu Hong and Yin-Fa Chen, Journal of Electronic Materials, Vol. 37, No. 6, p.867, (2008) [9] P. T. Vianco, K. L. Erickson and P. L. Hopkins, Journal of Electronic Materials, Vol. 23, No. 8, p.721, (1994) [10] C.Y. Lee and K.L. Lin, Thin Solid Films, 249, p.201, (1994). [11] J. Lau, Flip Chip Technologies Handbook, McGraw-Hill, New York, (1996). [12] H.N. Keller, IEEE Trans. Comp., Hybrids, Manuf. Technol. 9, p.433, (1986). [13] R. Aschenbrenner, A. Ostmann, G. Motulla, E. Zakel, and H. Reichl, IEEE Trans. Comp., Packag. Manuf. Technol. Part C 20, p.95, (1997). [14] E. Jung, P. Kasulke, R. Giebler, J. Kloeser, L. Dietrich, Ostmann, E. Zakel, and H. Reichl, IEPS, p.96, (1996). [15] C.D. Young and J.G. Duh, IEEE Trans. Comp., Packag., Manuf. Technol. Part A 21, p.330, (1998). [16] B.L. Young, J.G. Duh, and B.S. Chiou, J. Electron. Mater, 30, p.543, (2001). [17] S.V.S. Tyagi, V.K. Tondon, and S. Ray, Z. Metallkd, 76, p.492, (1985). [18] K.L. Lin and J.M. Jang, Mater. Chem. Phys, 38, p.33, (1994). [19] Yung-Chi Lin, Toung-Yi Shih, Shih-Kang Tien and Jenq-Gong Duh, Journal of Electronic Materials, 36, p.1469, (2007). [20] Yung-Chi Lin, Toung-Yi Shih, Shih-Kang Tien and Jenq-Gong Duh, Scripta Materialia, 56, p.49, (2007). [21] Weiqun Peng and Marco Elisio Marques, Journal of Electronic Materials, Vol. 36, No. 12, p.1679, (2007). [22] A. Hayashi, C.R. Kao and Y. A. Chang, Scripta Materialia, Vol. 37,No. 4, p.393, (1997). [23] P. Nash and A. Nash, Bulletin of Alloy Phase Diagrams, Vol. 16, No. 4, p.350, (1985). [24] 李守維, “錫/(銅-鎳)銲點介面反應與錫-銅/鎳銲點機械性質”, 國立清華大學, 化學工程研究所碩士論文, (2004). [25] S. Bader, W. Gust and H. Hieber, Acta Metall. Mater., Vol. 43, No. 11, p.329, (1995). [26] 陳志吉, “無鉛銲料與(鎳-釩)基材間之界面反應及錫-鎳-釩相平衡”, 國立清華大學, 化學工程學系博士論文, (2008). [27] NC-SMQ®51SC solder past date sheet, Indium, No. 97538 R6, (2008). [28] Solder Ball Shear, JESD22-B117A, JEDEC Standard, p.2, (2006). [29] Die Shear Strength, Method 2019.5, MIL-STD-883E, p.4, (1978). [30] S. W. Chen, C. M. Chen and W. C. Liu, J. Electronic Materials, Vol.27, No. 11, p.1193, (1998).
摘要: 
本研究擬針對電子工業中常見的Cu/Ni-P基材進行不同退火條件後與Sn-5 wt%Sb接合之銲點強度進行探討。將Al2O3/Cu/Ni-P基板分別在300、350℃下進行退火,退火時間從15、30、60分鐘。將各條件之基板與Sn-5wt%Sb進行迴銲接合,迴銲時間從1、2、5、10、30到60分鐘。
未進行退火處理之Cu/Ni-P基板與Sn-5wt%Sb接合後,在介面會產生Ni3Sn4的介金屬化合物,靠近焊料端的Ni3Sn4是Ni與Sn反應生成之介面介金屬化合物。迴銲過程中基板會持續與Sn反應生成Ni3Sn4,在經過長時間迴銲後Ni3Sn4會開始剝離溶入solder中。剪力推球測試結果顯示,未處理基板之銲點在迴銲時間越久之銲點強度越強,此應為介面的Ni3Sn4溶入solder中阻擋裂縫傳播所致。
將Cu/Ni-P基板進行退火處理後,因為Cu與Ni的熱膨脹係數不同,會造成表面Ni-P層破裂。此轉變使基板變的較為不穩定,在長時間迴銲後會產生基板撥離之現象,但可能有助於增強銲點之強度。在各條件銲點剪力測試結果顯示,迴銲1分鐘之銲點剪力強度以在300℃下退火60分鐘之試片最強並高於未處理試片,証實將基材進行適當的退火處理可強化銲點之剪力強度,但如退火溫度過高或是時間過久可能會造成基板在迴銲過程中嚴重溶解,進而降低銲點強度。

In this research, it would be studied about the strength of solder joint which connected Sn-5wt%Sb alloy and Cu/Ni-P substrate annealed under different condition. The annealing temperature of Al2O3/Cu/Ni-P substrates are 300 and 350℃ separately together with annealing time of 15, 30, 60 minutes. Substrates under different annealing conditions are reflowed together with Sn-5wt%Sb alloy and the reflow periods are 1, 2, 5, 10, 30 and 60 minutes separately.
During reflow, Sn atoms in Sn-5wt%Sb alloy will react with Ni atoms in Cu/Ni-P substrates via the driving force of diffusion. By this reaction, one kind of intermetallic compound (IMC), Ni3Sn4 will occur at the interface between substrate and solder alloy. IMC will grow continuously with increasing period of reflow due to the diffusion of Ni3Sn4 into solder. The shearing test results show that the solder joint strength is positively related to reflow period and it is supposed that the IMC blocks the growth of crack.
After Cu/Ni-P substrates annealing, because of different coefficient of thermal expansion between Cu and Ni, the stress will break the surface of Ni-P layer. This phenomenon makes substrates unsteady and even broken after long time reflow although it could increase the solder joint strength. Shearing test results also show that the solder joint which made of substrates annealed at 300℃, 60 minutes and reflowed 1 minute has the highest shearing strength. It explains that by using proper annealed substrates, shearing strength of solder joint will increase, but if annealing temperature is too high or time is too long, the substrate may dissolve during reflow and it will lower the solder joint strength.
URI: http://hdl.handle.net/11455/10652
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.