Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10655
標題: 氣相傳輸法合成氧化銦錫一維奈米結構與其光電特性的探討
Synthesis of ITO one-dimensional nanostructures by vapor transport process and their optoelectronic properties
作者: 余承晏
Yu, Cheng-Yen
關鍵字: ITO;氧化銦錫;nanowire;vapor transport;奈米線;氣相傳輸法
出版社: 材料科學與工程學系所
引用: [1] Drexler, K Eric (1990) Engines of Creation. Fourth Estate, London, 296 pp. [2] S. Lijima, Nature, 354, 56(1991) [3] Y. Q. Chen, J. Jiang, B. Wang and J. G. Hou, J. Phys. D: Appl. Phys., 3319-3322,37 (2004) [4] C. Cali, M. Mosa, G. Taragia, Solid State Electron, 877, 42 (1998) [5] A. J. Chiquito, A. J. Lanfredi and E. R. Leite, J. Phys. D: Appl. Phys., 045104, 41 (2008) [6] X.-P. Shen et al., J. Cryst. Growth, 471-477, 276 (2005) [7] S. S. Kim, S. Y. Choi, C. G. Park and H. Woo Jin, Thin Solid Films, 155, 347 (1999) [8] Dabin Yu, Debao Wang, Weichao Yu and Yitai Qian, Materials Letters, 84-87, 58 (2003) [9] J. R. Bellingham, A. P. Mackenuze, W. A. Philips, Appl. Phys. Lett., 2506, 58 (1991) [10] K. Osaza, T. Ye and Y. Aoyagi, Thin Solid Films, 246, 58 (1994) [11] B. J. Luff, J. S. Wilkinson and G. Perrone, Appl. Opt., 7066, 36 (1997) [12] W. Mai et al., Chem. Phys. Lett., 253-256, 460 (2008) [13] 賴宏仁博士,國立中興大學,奈米材料課程教材 [14] 林鴻明博士,大同大學,奈米材料課程教材 [15] M. R. Falvo, R. M. Taylor, A. Helser and V. Chi, Nature, 236-238, 397 (1999) [16] Sincell, Science, 1530, 290 (2000) [17] H. Dai, J. H. Hafner and A. G. Rinzler, Nature, 147-151, 384 (1996) [18] 林振華、陳玉心、王建義,全華科技圖書股份有限公司,奈米科技全書 (2005) [19] S. Matsui et al. J. Vac. Sci. Technol. B, 3168, 18 (2000) [20] F. E. Wagner et al., Nature, 691, 407 (2000) [21] A. P. Alivisatos et al., Science, 933, 271 (1996) [22] 吳中興,普林斯頓國際有限公司,奈米科學與技術 (2004) [23] M. S. Dresselhaus et al., Academic, Fullerenes and Carbon Nanotubes (1996) [24] K. Hiruma et al., J. Appl. Phys., 447, 77 (1995) [25] G. S. Cheng et al., J. Mater. Res., 347, 15 (2000) [26] Y. Li et al., Appl Phys. Lett., 2011, 76 (2000) [27] J. Hu et al., Acc. Chem. Res., 435, 32 (1999) [28] X. Duan et al., Nature, 409, 66 (2001) [29] M. H. Huang et al., Science, 1897, 292 (2001) [30] Y. Cui et al., Science, 1289, 293 (2001) 75 [31] J. Kong et al., Chem. Phys. Lett., 567-574, 292 (1998) [32] Z. W. Pan et al., Chem. Phys. Lett., 97-102, 299 (1999) [33] A. Thess et al., Science, 483-487, 273 (1996) [34] M. R. Sorensen, M. Brandbyge and K. W. Jacobsen, Phys. Rev. B, 3283, 57 (1998) [35] Y. Kondo, Kunio Takayangi, Science, 289, 606(2000) [36] M. Barbic, J. J. Mock. D. R. Smith, J. Appl. Phys., 91, 9341(2002) [37] S. Michtotte, S. M. Tempfli, L. Piraux, Appl. Phys. Lett., 82, 4119(2003) [38] A. Sugawara, T. Coyle, Appl. Phys. Lett., 70, 1043(2001) [39] M. N. Ou, S. R. Harutyunyan, S. J. Lai, phys. stat. sol. B, 244, 4512(2007) [40] B. Ludoph et al., Phys. Rev. Lett., 1530, 82 (1999) [41] J. I. Pauscual et al., Phys. Rev. Lett., 1852, 71 (1993) [42] H. Ohnishi et al., Nature, 780-789, 220, 395 (1998) [43] Y. Kondo and K. Takayanagi, Science, 606, 289 (2000) [44] Y. Arakawa and H. Sakaki, Appl. Phys. Lett., 939-941, 11, 40 (1982) [45] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett., 4, 89(1964) [46] D. Whang, S. Jin, Y. Wu, Nano Lett., 3, 1255(2003) [47] 吳哲耀,國立中興大學,碩士論文,2006 [48] 蔡鎮燦,國立中興大學,碩士論文,2007 [49] 賴建隆,國立中興大學,碩士論文,2008 [50] Y. C. Her et al., Appl. Phys. Lett., 043115, 98 (2006) [51] S. C. Jean and Y. C. Her, J. Appl. Phys., 024310, 105 (2009) [52] C. L. Hsin et al., Nano Lett., 1799-1803, 6, 7 (2007) [53] 呂宗昕,科學發展,376 (2004) [54] Qing Wan et al., Nano Lett., 2909-2915, 12, 6 (2006) [55] Qing Wan et al., Adv. Mater., 234-238, 18 (2006) [56] Guoxiu Wang et al., Inorg. Chem. 4778-4780, 46 (2007) [57] T. Guo, P.Nikolaev, A.Thess, Chem. Phys. Lett., 243, 49(1995) [58] Zuqin Liu et al., Adv. Mater. 1754, 20, 15 (2003) [59] Gunho Jo et al., Colloids and Surfaces A: Physicochem. Eng. Aspects, 308-311 (2008) [60] Z. M. Zeng et al., Nanotechnology, 045503, 20 (2009) [61] Pengcheng Xu et al., Sensors and Actuators B, 802-808, 130 (2008) [62] E. I. Givargizov, J. Crystal. Growth 31, 20(1975) [63] A. M. Morales, C. M. Lieber, Science, 279, 208(1998) [64] Y. Wu et al., J. Am. Chem. Soc. 3165, 123 (2001) [65] J. B. Hannon et al., Nature, 440, 69 (2006) [66] M. Mattila et al., Nanotechnology, 1580, 17 (2006) 76 [67] L. Cao et al., Nano Lett.1852, 6 (2006) [68] S. Noor Mohammad, Nano Lett., 1532-1538, 5, 8 (2008) [69] M. Valden et al., Science, 1647, 281 (1998) [70] S. L. Li et al., Appl. Phys. Lett., 263106, 90 (2007) [71] L. Dai et al., Appl. Phys. A, 687-689, 75 (2002) [72] Radhouane Bel Hadj Tahar et al., J. Appl. Phys., 2631, 83 (1998) [73] J. C. Manifacier, Thin Solid Films, 297, 90 (1982) [74] Granqvist C. G. and Hultaker A., Thin Solid Films, 411, 1 (2002) [75] Lata Gupta et al., Thin Solid Films, 176, 33 (1989) [76] M. Haruta, Catal. Catal Today , 153, 36 (1997) [77] 謝嘉民,奈米通訊,第十二卷,第二期,P.8 [78] Yiqing Chen et al., Chem. Phys. Lett., 16, 369 (2003) [79] Zu Rong Dai et al., Adv. Funct. Mater. 9, 13 (2003) [80] T.Y. Tan et al., Appl. Phys. A, 423, 74 (2002) [81] Nicholas M. Lakin et al., J. Chem. Phys., 4439, 107 (1997) [82] W. Seo, K. Koumoto, J. Am. Ceram. Soc., 1777, 79 (1996) [83] G. J. Jiang et al., J. Mater. Sci., 63, 35 (2000) [84] J.S. Jeong et al., Chem. Phys. Lett., 246, 384 (2004) [85] X.C. Wu et al., Chem. Phys. Lett., 28, 373 (2003) [86] K.P. Kalyanikutty et al., Chem. Phys. Lett., 389, 408 (2005) [87] Seon-Soon Kim et al., Thin Solid Films, 155, 347 (1999) [88] Y. Mizuhara et al., J. Am. Ceram. Soc. 109, 78 (1995) [89] H.M. Jennings, J. Mater. Sci. 951, 18 (1983) [90] Chao Li et al., Adv. Mater. 143, 15 (2003) [91] 莊惠芳,國立清華大學,碩士論文 (2006) [92] W.F. Wu and B.S. Chiou, Thin Solid Films, 201, 247 (1994) [93] Y. Ohhata et al., Thin Solid Films, 255, 59 (1979) [94] G. Korotcenkov et al., Thin Solid Films, 8065, 515 (2007) [95] Huaqiang Cao et al., Appl. Phys. Lett., 761, 83 (2003) [96] P. Guha et al., Appl. Phys. Lett., 3851, 85 (2004) [97] A. Gurlo et al., Thin Solid Films, 288, 307 (1997) [98] Changhao Liang et al., Adv. Mater. 1330, 13 (2001) [99] M.J. Zheng et al., Appl. Phys. Lett. 839, 79 (2001) [100] Heqing Yang et al., Crystal Growth and Design, 3154, 8 (2008) [101] Tao Gao and Taihong Wang, J. Crystal Growth, 660, 290 (2006)
摘要: 
本實驗藉由氣相傳輸法合成氧化銦錫一維奈米結構,並觀察其成長機制、陰極激發光特性與單根電性量測。實驗結果發現,將銦粉、錫粉以適當的比例混合,與鍍有金觸媒的矽基板置於860℃的高溫爐中,通入適當流量的氧氣,即可藉由VLS法合成氧化銦錫奈米線。藉由控制觸媒層的厚度或是氧氣流量,氧化銦錫奈米線的直徑可控制在30 ~ 80 nm,長度可達10μm以上。奈米線的生長機制以異質觸媒輔助的VLS法為主,奈米線頂端的觸媒是VLS法的強力證據。透過XRD、TEM及XPS來探討結構及組成,證實了奈米線為氧化銦摻雜錫的單晶結構。在性質測試方面,我們藉由微影製程與FIB系統進行單根奈米線的電性量測,電阻率約在129.65±39.51μΩ-cm;在CL的測試中,氧化銦錫奈米線可以激發波長約385nm的高強度藍紫光。因此,氧化銦錫一維奈米結構有很大的潛力應用於光電元件系統。

We reported the synthesis of indium-tin-oxide (ITO) one-dimensional nanostructure by vapor transport method. The ITO nanowires were synthesized by the chemical vapor deposition at 860℃ with Ar and O2 gas flow. The diameters of ITO nanowires, which could be controlled by thickness of Au catalyst or flow rate of oxygen, range from 30 to 80 nm and lengths are up to 10μm. The crystal structure and composition of the products were identified by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), the products were confirmed to be tin-doped indium oxide with single crystal of body-centered cubic structure. These ITO nanowires were fabricated into single nanowire device using photolithography and FIB system. The conductivity of a single nanowire was measured to be about 129.65±39.51μΩ-cm. For the cathodoluminescence test, ITO nanowires showed strong blue-violet emission peaked about 385nm. Therefore, ITO nanowires may have potential applications for optoelectronic devices system.
URI: http://hdl.handle.net/11455/10655
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.