Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10657
標題: 輕質骨材混凝土預鑄牆之火害行為研究
Research on Fire Resistance Performance of Precast Lightweight Aggregate Concrete Walls
作者: 湯鈞任
Tang, Jun-Ren
關鍵字: 輕質混凝土牆;reinforced lightweight aggregate concrete wall;輕質預鑄牆接頭;耐火試驗;荷重能力;延展性;破壞模式;遲滯消能;reinforced normalweight aggregate concrete wall;fire-resistance test;load-carrying capacity;ductility;connections;failure mode;repeated loading;energy dissipation
出版社: 土木工程學系所
引用: 1. B. Georgali, P.E. Tsakiridis , “Microstructure of fire-damaged concrete A case study”, Cement & Concrete Composites 27, PP.255–259, 2005. 2. Omer Arioz , “ Effects of elevated temperatures on properties of concrete”, Fire Safety Journal 42 , PP.516–522, 2007. 3. Metin Husem , “The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete”, Fire Safety Journal 41, PP.155–163, 2006. 4. Wen-Chen Jau , Kuo-Li Huang, “A study of reinforced concrete corner columns after fire”, Cement & Concrete Composites 30 , PP.622–638, 2008. 5. John Gales,Luke A.Bisby , Martin Gillie , “Unbonded post tensioned concrete in fire: A review of data from furnace tests and real fires”, Fire Safety Journal 46, PP. 151–163, 2011. 6. V.K.R. Kodura, L. Phanb , “Critical factors governing the fire performance of high strength concrete systems”, Fire Safety Journal 42 , PP.482–488 , 2007. 7. R.M. Lawson , “Fire engineering design of steel and composite buildings”, Journal of Constructional Steel Research 57 , PP.1233–1247 , 2001. 8. K.J. Mun , “Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete”, Construction & Building Materials 21, PP.1583–1588, 2007. 9. S. Demirdag , L. Gunduz , “Strength properties of volcanic slag aggregate lightweight concrete for high performance masonry units”, Construction and Building Materials 22, PP.135–142, 2008. 10. Dongming Yan , Gao Lin , “Influence of initial static stress on the dynamic properties of concrete”,Cement & Concrete Composites 30, PP.327–333, 2008. 11. 顏聰、陳豪吉,「輕質骨材混凝土」,中華輕質骨材協會,2005。 12. 李名浩,「旋窯燒製水庫淤泥輕質骨材之研究」,碩士論文,國立中興大學土木工程學系,2003。 13. J. J. Shideler, “Lightweight Aggregate Concrete for Structural USE”, ACI Journal, October 1957. 14. Spratt, H., “The Structural Use of Lightweight Aggregate Concrete”, C. C. A., New York, 1974. 15. Weigler, H., “Gefuegedichter Leichtbeton”, Beton, PP. 292, 1972. 16. 顏 聰、林宜清、黃玉麟、陳豪吉,「輕質混凝土配比設計及拌製技術之研究」,財團法人臺灣營建研究中心研究計畫報告,1994。 17. 顏 聰、王櫻茂、蕭江碧、林純正、周智中、黃玉麟等,「傳統工業技術開發計畫-混凝土輕質骨材技術發展及應用」,經濟部工業局八十二年度專案計畫執行成果報告,1993。 18. 顏聰、曾元一、王櫻茂、黃玉麟等,「人造骨材輕質混凝土之製造及工業化研究」,財團法人臺灣營建研究中心報告書,1993。 19. 顏聰、林宜清、黃玉麟、陳豪吉,「輕質骨材混凝土之澆置及夯實施工研究」,中華高科技研究發展協會研究計畫報告,1995。 20. Hwang, C.L.,R.Y. Lin, K.M. Hsu, and J.F. Chan, "Granulation of Fly Ash Lightweight Aggregate and Accelerated Curing Technology," Fourth CANMET-ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, PP.419~438, 1992. 21. 黃兆龍,郭淑德,「煤灰輕質骨材性質、製造及應用開發研究」,國立台北工業技術學院營建系與台灣電力公司建教合作報告,1992。 22. 林銅柱,「從國外輕質骨材科技展望國內輕質混凝土工業」,高壓蒸氣養護輕質混凝土研討會,經濟部工業局,1991. 23. Bardhan-Roy, B. K., “Lightweight Aggregate Concrete in UK”, International Symposium on Structural Lightweight Aggregate Concrete, Norway, June 1995. 24. Helgesen, Kjell Hakon, “Lightweight Aggregate Concrete in Norway”, International Symposium on Structural Lightweight Aggregate Concrete, Norway, June 1995. 25. V.V. Bertero, E. P. Popov and B. Forzani, “Seismic Behavior of Lightweight Concrete Beam-Column Subassemblages” , ACI Journal, PP.44-52, 1980. 26. Sekhniakshivile, E.A.,”On the Effective Use of Light Concrete and Reinforced Concrete in Construction in Seismic Regions”, Proceedings, Sixth World Conference on Earthquake Engineering (New Delhi), V.3, PP.2034-2024, 1997. 27. Paramzim, A.M., and Gorovitz, I. G., “Analysis of Lightweight Concrete Use in Seismic-Resistant Multistory Buildings”, Proceedings, Sixth World Conference on Earthquake Engineering (New Delhi), V.3, PP.2124-2125 Jan. 1997. 28. Bertero, V. V., and Popov, E. P., “Seismic Behavior of Ductile Moment-Resisting Reinforced Concrete Frames”, Reinforced Concrete Structures in Seismic Zones, SP-53, American Concrete Institute, Detroit, PP.247-291, 1977. 29. Forzani, B., Popov, E. P., and Bertero, V. V., “Hysteretic Behavior of Lightweight Reinforced Concrete Beam-Column Subassemblages”, EER Report No. UCB/EERC 79/01, Earthquake Engineering Research Center, University of California, Berkeley, Jan. 1979. 30. 高章育、陳豪吉,「輕質骨材混凝土之耐震性質研究」,碩士論文,國立中興大學土木工程系,2002。 31. 鄭文信、王櫻茂,「人造輕質骨材混凝土耐久性之研究」,碩士論文,國立成功大學土木工程系,2001。 32. Zhang, M.H. and Gjorv, O.E., ''Characteristics of Lightweight Aggregates for High Strength Concrete'', ACI Materials Journal, V.88, No.21, PP. 150-158, 199. 33. Zhang, M.H. and Gjorv, O.E., ''Mechanical Properties of High-Strength Lightweight Concrete'', ACI Materials Journal, V.88, No.3, PP.240-247, 1991. 34. Chang, T.P., C.Y. Lin, C.L. Hwang, Y.F. Wang, "Properties of High-Strength Concrete with Cold-Palletized Lightweight Fly-Ash Aggregate," ACI Conference, PP. 1-14, 1994. 35. 陳豪吉,「以台灣地區生產之輕質骨材探討輕質混凝土之配比、製作及強度性質」,博士論文, 中興大學土木工程系, 1998,. 36. 沈得縣、黃兆龍、林佳柏、呂正宗,「高性能輕質骨材混凝土之配比設計技術與性質量測分析」,第十二屆全國技術及職業教育研討會,工業類V,第349~358頁,1997。 37. ACI Committee 213, ''Guide for structural lightweight aggregate concrete''. 38. ACI Committee 211 Communication, Draft revision of ''Recommended practice for selecting proportions for structural lightweight concrete'', (ACI 613A-59) 39. ACI Committee 211.''Standad Practice for selecting proportions for Structural Lightweight Concrete'', (ACI 211.2-81) 40. The Concrete Society, “Assessment of Fire Damaged ConcreteStructures and Repair by Gunite”, Report of a Concrete Society Working Party, London, PP.28, 1978. 41. A. k. Tovey, “Assessment and Repair of Fire Damaged Concrete Structures-an Update”, ACI, Special Publication Sp-92, Evaluation and Repair of Fire Damaged to Concrete, Edited by T. Z. Harmathy, 1986. 42. 吳敏洽,「受熱後混凝土內部之力學性質變化」,碩士論文,國立中興大學土木工程系,1987。 43. 鄭錦銅,「混凝土在高溫下之熱傳及微觀結構變化」,碩士論文,國立中興大學土木工程系,1987。 44. 劉玉雯,「高溫下混凝土之握裹行為」,碩士論文,國立中興大學土木工程系,1990。 45. 高金盛,沈進發,陳舜田,「混凝土火害溫度之綜合評估」,第二屆結構工程研討會論文集(I),49-59頁,南投日月潭,台灣,1994。 46. 陳舜田,「火害工程研究」,結構工程,第十一卷,第一期,39-46頁,1996。 47. 沈進發,陳舜田,沈得縣,「混凝土結構物火害後現場勘查之程序」,結構工程,第十三卷,第二期,43-59頁,1998。 48. 沈得縣,陳舜田,沈進發,「各國火害後混凝土結構物安全評估程序介紹」,建築物火害及災後安全評估法研討會論文集,43-70頁,台北,台灣,1999.04。 49. 陳舜田,「國內外火害工程研究簡介」,建築物火害及災後安全評估法研討會論文集,31-42頁,1999.04。 50. U. Schneider,“Concrete at High Temperatures –A General Review”, Fire Safety Journal, Elsevier, Vo.13, No.1, PP.55-68 , 1988. 51. Eurocode 2:“Design of concrete structures”. PrEN 1992-1-2 part 1.2: General Rules –Structural fire design, European Committee for Standardization, Brussels, 2002. 52. P.K. Metha, “Concrete-Structure, Material and Properties”, Prentice all, Englewood Cliffs, 1986. 53. S. Mindess & J. f. Young, “Concrete”, Prentice-Hall, Inc. Englewood liffs, New Jersey, 1981. 54. Y. Collet, “Etude des proprietes du beton soumis a des temperatures elevees entre 200 net 900°C”, Annales des Travaux Publics Beiges, No. 4, PP. 332-338, 1977. 55. Eurocode 2, “Eurocode 2: Design of Concrete Structures. ENV 1992-1-2: General Rules –Structural Fire Design”. European Committee for Standardization, Brussels, Belgium, 1993. 56. BSI, “Structural Use of Concrete, BS 8110”, British StandardsInstitution, UK, 1985. 57. Inwood, M., “Review of NZS 3101 for high strength and lightweight concrete exposed to fire”, Fire Engineering Research Report 99/10. University of Canterbury, New Zealand, 1999. 58. M.S. Abrams, “Compressive Strength of Concrete , atTemperatures to1600°F”, Temperature and Concrete. 59. Eurocode 3, “Eurocode 3: Design of Steel Structures. ENV 1993-1-2: General Rules – Structural Fire Design”. European Committee forStandardization, Brussels, Belgium, 1995. 60. L.T. Phan and N.J. Carino, “Code Provisions for High Strength Concrete Strength-Temperature Relationship at Elevated Temperatures”, Building and Fire Research Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Mailstop 8611, Gaithersburg, Maryland 20899-8611. 61. A. Bilodeau, V.K.R. Kodur, and G.C. Hoff, “Optimization of the type and amount of polypropylene fibres for preventing the spalling of lightweight concrete subjected to hydrocarbon fire”, Cement & Concrete Composites, Vol. 26, PP. 163-174, 2004. 62. T.A. Hammer, “Compressive Strength and E-modulus at Elevated Temperatures”, Report 6.1, High Strength Concrete phase 3, SINTEF-report no STF70 A95023, Trondheim, PP. 16, 1995. 63. T.T. Lie and D.E. Allen, “Calculation of the fire resistance of reinforced concrete columns, Division of Building Research”, National Research Council of Canada, Technical Paper No. 378, Ottawa, NRCC 12797, PP. 25, 1972. 64. Design of Concrete Structures for Buildings, 1984. Canadian Standards Association, CSA Standard CAN3-A23.3, Rexdale, Ontario, 281 p. 26. C. Castillo and AJ. Durrani, “Effect of transient high temperature on high-strength concrete”, ACI Mater J., 87(1), PP.47-53, 1990. 65. G. Sanjayan and LJ Stocks, “Spalling of high-strength silica fume concrete in fire”, ACI Mater J., 90(2), PP. 170-173, 1993. 66. S.Y.N. Chan, X. Luob, and W. Sunb, “Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete”, Construction and Building Materials, No. (14), PP. 261-266, 2000. 67. L.T. Phan, “Fire Performance of High-Strength Concrete: A Report of the State-of-the-Art”, NISTIR 5934, Building and Fire Research Lab``oratory, National Institute of Standards and Technology, Gaithersburg, Maryland, December 1996. 68. L.T. Phan and N.J. Carino, “Review of mechanical properties of HSC at elevated temperature”, Journal of Materials in Civil Engineering, American Society of Civil Engineers, v.10, PP58-64, February 1998. 69. L.T. Phan and N.J. Carino, “Mechanical Properties of High Strength Concrete at Elevated Temperatures”, NISTIR 6726, Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, March 2001. 70. U. Schneider, “Concrete at high temperatures-A general review”, Fire Safety Journal, PP.55-68, 1988. 71. U. Schneider, “Behavior of concrete at high temperatures”, RILEM-Committee 44-PHT Department of Civil Engineering, February 1983. 72. U. Schneider, “Properties of materials at high temperatures Concrete”, RILEM-Committee 44-PHT Department of Civil Engineering, University of Kassel ,Kassel, June 1985. 73. L.T. Phan and N.J. Carino, “Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures”, ACI Materials Journal, American Concrete Institute, v. 99 (1), January, February 2002. 74. Y. Anderberg, “Spalling phenomena of HPC and OC. Proc., In Workshop on Fire Performance of High-Strength Concrete”, NIST Spec. Publ. 919, L. T. Phan, N. J. Carino, D. Duthinh, and E. Garboczi, (eds), National Institute of Standards and Technology, Gaithersburg, Md.,PP. 69-73, 1997. 75. Z.P. Bant, “In Workshop on Fire Performance of High-Strength Concrete”, NIST Spec. Publ. 919, L. T. Phan, N. J. Carino, D. Duthinh, and E. Garboczi, (eds), National Institute of Standards and Technology, Gaithersburg, Md., PP.155-164, 1997. 76. L.T. Phan and N.J. Carino, “Fire Performance of High Strength Concrete Strength: Research Needs”, Building and Fire Research Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Mailstop 8611, Gaithersburg, Maryland 20899-8611. 77. T.A. Holm, “lightweight concrete and aggregates,”Standard Technical Publication 196C, 1994. 78. T.A. Hammer, “Marine Concrete Structures Exposed to Hydracarbon Fires –Spalling Resistance of LWA Concrete”, SINTEF-report no STF65 A88064, Trondheim, PP. 8, 1990. 79. G. Fabritz, “Method for the Manufacture of Lightweight Fire-resistant Concrete”, Tysk patent DE 3704014 A1, German, PP. 2, 1987. 80. J.J. Jensen, T.A. Hammer, E. Opheim, and P. A. Hansen, “Fire Resistance of Lightweight Aggregate Concrete”, Proceedings of the International Symposium on Structural Lightweight Aggregate Concrete, Sandefjord, PP. 192-203, 1995. 81. P. A. Hansen, and J. J. Jensen, “Fire Resistance and Spalling Behavior of LWA Beams”, SINTEF-report no STF70 A95004, Trondheim, PP. 13, 1995. 82. H. L. Malhotra, “Spalling of Concrete in Fires”, CIRIA technical note 118, London, PP. 34, 1984. 83. 葉瑞德、邱耀正,「高型R.C.剪力牆-構架互制實驗研究」,碩士論文,國立成功大學土木工程系,2002。 84. 余明松、邱耀正,「低型R.C.剪力牆-構架互制實驗研究」,碩士論文,國立成功大學土木工程系,2002。 85. Benjamin, Jack R., and Harry A. Williams, “The Behavior of One-Story Reinforced Shear Wall,” Journal of the Structural Division, ASCE, PP.1254-1- PP.1254-49, 1957. 86. Yamada, M. H. Kawamura, and K. Katagihara, “Reinforced Concrete Shear Walls Without Openings Test and Analysis,”Shear in Reinforced Concreted, Vols. 1&2 Combined Edition, PP.539-558,1974. 87. Barda, F. J. M. Hanson, and W.G. Corley, “Shear Strength of Low-Rise Walls with Boundary Elements,” R.C. Structure in Seismic Zones, ACI, edited by N. M. Hawkins, 1977. 88. 陳俊釗 ,「鋼筋輕質骨材混凝土牆之力學行為」,碩士論文,國立中興大學土木工程學系,2005.6。 89. 張智淵,「水庫淤泥輕質骨材混凝土之量產化及預鑄柱、牆之行為」,碩士論文,國立中興大學土木工程學系,2004.6。 90. 余明松,「低型RC 剪力牆-構架互制實驗研究」,碩士論文,成功大學土木研究所,2002。 91. 郭雄銘,「鋼筋混凝土低型剪力牆承受反向重覆載重之行為研究」,碩士論文,成功大學建築研究所,1986。 92. 羅必達,「低型鋼筋混凝土剪力牆承受反向重覆載重之剛度變化及耐震診斷研究」,碩士論文,成功大學建築研究所,1988。 93. 陳亦信, 「低型鋼筋混凝土槽縫剪力牆承受反向重覆載重之剛度變化及耐震診斷研究」,國立成功大學建築工程研究所碩士論文,民國七十七年六月。 94. 黃建豪 ,「反覆荷重下鋼筋輕質混凝土梁之撓屈行為」,碩士論文,國立中興大學土木工程學系,2003.6。 95. 黃中和,「輕質骨材混凝土樑耐震行為之研究」,博士論文,國立中興大學土木工程學系,民國2004.6。 96. 徐建稷 ,「鋼筋混凝土構件在反覆載重作用下撓剪強度研究」,碩士論文,國立台灣科技大學營建工程系,2000。 97. 郭恆維,「新澆置鋼筋混凝土梁受反覆荷重之影響」,碩士論文,中央大學土木工程研究所,2002。 98. 李嘉泰,「低型剪力牆之鋼筋配置對其耐震行為之影響」,碩士論文,成功大學建築研究所,1987。 99. 郭雄銘,「鋼筋混凝土低型剪力牆承受反向重覆載重之行為研究」,碩士論文,成功大學建築研究所,1986。 100. 賴慶鴻,「鋼筋混凝土剪力牆強度與剛度之試驗與分析」,碩士論文,成功大學建築研究所,1999。 101. 李威聰,「含牆鋼筋混凝土構架試驗研究」,碩士論文,成功大學土木研究所,2001。 102. C. G. Go, J. R. Tang, J. H. Chi, C. T. Chen, Y. L. Huang, “Fire- resistance property of reinforced lightweight aggregate concrete wall”, Construction & Building Materials 30, PP.725-733, 2012.
摘要: 
本研究主要在探討輕質骨材混凝土牆遭受高溫後之力學行為,並與常重混凝土牆作比較。研究內容分為三個部份,第一部份探討輕質牆高溫後之基本力學性質,第二部份探討輕質牆高溫後之遲滯消能性質,第三部份探討輕質預鑄牆接頭高溫後之力學性質。
第一部份研究之參數包含鋼筋間距、粗骨材種類(輕質及常重)、牆體尺寸與高溫與否等,探討這些不同參數分別對牆之荷重能力、勁度、延展性及破壞模式之影響。研究結果顯示鋼筋輕質骨材混凝土牆與常重骨材混凝土牆經過耐火試驗後,輕質牆之荷重能力、勁度及延展性等行為都優於常重牆。就高溫後之輕質牆而言,當鋼筋間距愈小,牆之降伏強度與極限強度愈高,但延展性愈差,鋼筋間距不同,對牆試體的開裂強度影響不大,這些現象均與一般認知未燒過之常重牆相同,顯示標準升溫過程未使輕質牆喪失基本力學行為。
第二部份研究主要在探討鋼筋輕質混凝土牆在進行耐火試驗後,反覆荷重作用下之力學行為,並與鋼筋常重混凝土牆進行比較。研究之參數包含鋼筋間距、粗骨材種類及牆體尺寸與火害前後分別對強度、勁度、延展性及破壞模式之影響。研究結果顯示經耐火試驗後之輕質牆,當鋼筋間距愈小,牆之降伏強度與極限強度愈高,但延展性愈差,遲滯能也不佳。鋼筋間距不同,對牆試體的開裂強度影響不大。就牆體尺寸效應而言,牆之寬度愈大則勁度愈大,遲滯能也較高。輕質牆經過耐火試驗後,勁度、延展性及遲滯能量與未經耐火試驗之輕質牆差異不大,顯示標準升溫過程未使鋼筋輕質骨材凝土牆喪失基本力學行為;而常重牆經耐火試驗後,其強度、勁度以及遲滯能量變化都有明顯的下降趨勢。研究結果顯示,輕質牆之反覆荷重效應具有較佳之耐火性能。
第三部份研究主要在探討市面上之預鑄牆接頭鐵件用於輕質骨材混凝土試體經耐火試驗後之力學行為,並與鋼筋常重混凝土試體進行比較。在實際用途中,乾式(61)調整接頭及濕式(81)調整接頭只承受拉力,而(56E)承重接頭必須承受拉力與剪力,本研究因此對上述三種接頭都進行抗拉試驗,只對(56E)承重接頭進行抗剪試驗。試驗結果顯示,上述三種接頭在輕質骨材混凝土試體中與在常重試體中遭受火害後之力學行為都相當一致,例如在荷重-變位圖形中,抗拉試驗中兩類試體(輕質及常重試體)都顯示具有開裂及極限荷重之兩階段模式;抗剪試驗中兩類試體都顯示一旦開裂即瞬間破壞。另外,在破壞荷重及耐久性方面,各種試驗結果都顯示經耐火試驗後,預鑄牆接頭在輕質試體中比在常重試體中有更佳之耐火性能。

The main purpose of the research is to study the mechanical behavior of the reinforced lightweight aggregate concrete walls after high temperature. The study includes three sections. The first section is to study the basic mechanics of the walls. The second section is to study the energy absorption of the walls after high temperature. The third section is to study the behaviors of connections for the precast walls after high temperature.
The research parameters in the first section include steel spacings, lightweight/normalweight aggregates, wall sizes and with/without high temperatures. The study results indicate that after high temperature the load-carrying capacities, stiffness and ductilities of RLAC (Reinforced Lightweight Aggregate Concrete) walls are all better than those of RNAC (Reinforced Normalweight Aggregate Concrete) walls. When the steel spacings in RLAC walls after high temperature are smaller the yielding loads and ultimate loads are greater but the ductilities are worse. All of these phenomena are the same as the phenomena that have been already known in regular walls under normal temperature.
The main purpose of the second section is to study the mechanical behavior of RLAC walls and RNAC walls under repeated loading after fires. The research parameters include spacings of bars, sizes of coarse aggregates and the sizes of walls. The research results show that after fires when bar spacing is smaller the wall stiffness and the wall ultimate strength are higher but the ductility and energy dissipation are smaller. The bar spacing does not affect the wall cracking strength apparently. As for the wall size effect, when the wall width is bigger, the wall stiffness and the energy dissipation are bigger. After fires, the stiffness, ductility and energy dissipation of RLAC walls are not obviously different, while those of RNAC walls have obvious declines. This means that the RLAC walls have better mechanical behavior under repeated loading after fires than RNAC walls do.
The main purpose of the third section project is to study the mechanical behavior of the connections for precast walls made of RLAC and RNAC after fire-resistance tests. Three types of connections, dry type of (61), wet type of (81) and bearing type of (56E), were selected for the tests. Tension tests were performed for all types of the connections. But, shearing test was performed only for the connections of bearing type of (56E). The test results show that the mechanical behavior of all selected types of connections after fire-resistance tests are almost the same. For example, in the load-displacement diagrams of tension tests, both types of specimens (lightweight and normalweight specimens) have two particular points, cracking load and ultimate load, able to be read. But, there is only one point, ultimate load, able to be read in shearing test. In the shearing tests, all of specimens failed as soon as the cracks occur. Besides, on the ultimate loads and ductilities, test results show that the connections casted in lightweight concrete perform better than those in normalweight concrete.
URI: http://hdl.handle.net/11455/10657
其他識別: U0005-0808201217463600
Appears in Collections:土木工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-101-8095062101-1.pdf4.6 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.