Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10658
標題: 在SnO2 奈米線外自催化生長In2O3 的旁支異質奈米結構及其激發光特性之研究
The self-catalystic branch growth and photoluminescence study of SnO2/In2O3 hetero-nano-structure
作者: 姜慶國
Chiang, Ching-Kuo
關鍵字: SnO2;氧化錫;In2O3;Nanowire;Heterostructure;Photoluminescence;氧化銦;奈米線;異質結構;光激發光
出版社: 材料科學與工程學系所
引用: [1] Z.W. Pan, Z.R. Dai, Z.L. Wang, Science, vol.291 (2001) 1947. [2] Y.X. Chen, L.J. Campbell, W.L. Zhou, J. Crystal Growth, vol.270 (2004) 505. [3] J.S. Jeong, J.Y. Lee, C.J. Lee, S.J. An, G.-C. Yi, Chem. Phys. Lett., vol.384 (2004) P246. [4] Y. Jiang, X.M. Meng, J. Liu, Z.R. Hong, C.S. Lee, S.T. Lee, Adv. Mater., vol.15 (2003) P1195. [5] M.S. Gudiksen, L.J. Lauhon, J.F. Wang, D.C. Smith, C.M. Lieber, Nature, vol.415 (2002) 617. [6] L.J. Lauhon, M.S. Gudiksen, D.L. Wang, C.M. Lieber, Nature, vol.420 (2002) 57. [7] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民編著,「奈米科技導論」, 2005,全華科技圖書出版。 [8] 范光照、黃漢邦、陳炳輝、張所鋐、顏家鈺編著,「奈米工程概論」,2003, 普林斯頓國際有限公司出版。 [9] 葉瑞銘編著,「奈米科技導論」,2004,高立圖書出版。 [10] 馬振基編著,「奈米材料科技原理與應用」, 2004,全華科技圖書出版。 [11] S. Iijima,Nature, vol.354 (1991) 56–58 . [12] 謝嘉民、賴一凡、林永昌、枋志堯編著, 奈米通訊, 第十二卷, 第二期. P28 [13] Rama Venkatasubramanian, Edward Siivola, Thomas Colpitts & Brooks O''Quinn, Nature, vol.413 (2001) 597-602. [14] Ray H. Baughman, Anvar A. Zakhidov, Walt A. de Heer, SCIENCE, vol.297 (2002) 787-792. [15] J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, T. Kunitake, Chem. Mater., vol.17 (2005) 3513-3518. [16] Zheng Wei Pan, Zu Rong Dai, Zhong Lin Wang, SCIENCE, vol.291 (2001) 1947-1949. [17] P. X. Gao, Y. Ding, and Z. L. Wang, NANO LETTERS, vol.3 (2003) 1315-1320. [18] Jingyu Lao, Jianyu Huang, Dezhi Wang, Zhifeng Ren, Adv. Mater., vol.16 (2004) 65-69. [19] Charles M. Lieber, Zhong Lin Wang, MRS BULLETIN, vol.32 (2007), 99-108. [20] Chao Li, Daihua Zhang, Xiaolei Liu, Song Han, Tao Tang, Jie Han, Chongwu Zhou, APPLIED PHYSICS LETTERS, vol.82 (2003) 1613-1615 [21] Y. Li, G. W. Meng, L. D. Zhang, APPLIED PHYSICS LETTERS, vol.76 (2000) 2011-2013. [22] Zheng Miao, Dongsheng Xu, Jianhua Ouyang, Guolin Guo, Xinsheng Zhao, Youqi Tang, NANO LETTERS, vol.2 (2002) 717-720. [23] Yadong Yin,Guangtao Zhang, Younan Xia, Adv. Funct. Mater., vol.12 (2002) 293-298. [24] Zu Rong Dai, Zheng Wei Pan, Zhong L. Wang, Adv. Funct. Mater., vol.13 (2003) 9-24. [25] R.S. Wagner, W.C. Ellis , Appl. Phys. Lett., vol.4 (1964) P89. [26] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater., vol.15 (2003) P353. [27] Xing-Jiu Huang, Yang-Kyu Choi, Sensors and Actuators B, vol.122 (2007) 659–671. [28] D. A. Dikin, X. Chen, W. Ding, G. Wagner, and R. S. Ruoff, JOURNAL OF APPLIED PHYSICS, vol.93(2003) 226-230. [29] Xijian Chen, Huifang Xu, Ningsheng Xu, Inorganic Chemistry, vol.42 (2003) 3100-31063. [30] Maojun Zheng, Guanghai Li, Xinyi Zhang, Shiyong Huang, Yong Lei, Lide Zhang, Chem. Mater. vol.13 (2001) 3859-3861. [31] Z.R Dail,Z.W.Pan,Z.L. Wang Solid State Communication, vol.118 (2001) 351-354. [32] Z. R. Dai, J. L. Gole, J. D. Stout, Z. L. Wang , J. Phys. Chem. B vol.106 (2002) 1274-1279. [33] Andrei Kolmakov,* Youxiang Zhang, Martin Moskovits, NANO LETTERS vol.3 (2003) 1125-1129. [34] Zuqin Liu, Daihua Zhang, Song Han, Chao Li, Tao Tang, Wu Jin, XiaoLiu, Bo Lei,Changwu Zhou, Adv. Mater. vol.5 (2003) 1754-1755. [35] Y.X. Chen, L.J. Campbell, W.L. Zhou, Journal of Crystal Growth vol.270 (2004) 505-510. [36] Maojun Zheng, Lide Zhang , Xinyi Zhang , Jun Zhang , Guanghai Li, Chemical Physics Letters vol.334 (2001) 298-302. [37] J.G. Wen , J.Y. Lao , D.Z. Wang , T.M. Kyaw , Y.L. Foo , Z.F. Ren , Chemical Physics Letters vol.372 (2003) 717-722. [38] Xiang Yang Kong, Zhong Lin Wang , Solid State Communications, vol.128 (2003) 1-4. [39] Jingyu Lao, Jianyu Huang, Dezhi Wang, Zhifeng Ren, Adv. Mater., vol.16 (2004) 65-69. [40] Daihua Zhang, Chao Li, Song Han, Xiaolei Liu, Tao Tang, Wu Jin, and Chongwu Zhou, APPLIED PHYSICS LETTERS, vol.82 (2003) 112-114. [41] Qing Wan, Ming Wei, Dan Zhi, Judith L. Adv. Mater., vol.18 (2006) 234–238. [42] J.X. Wang, H.Y. Chen, Y. Gao, D.F. Liu, L. Song, Journal of Crystal Growth, vol.284 (2005) 73–79. [43] Y. Li_, G. Xu, Y.L. Zhu, X.L. Ma, H.M. Cheng, Solid State Communications, vol.142 (2007) 441–444 [44] A. Vomiero, M. Ferroni, E. Comini, G. Faglia, and G. Sberveglieri, NANO LETTERS, vol.7, (2007) 3553-3558. [45] Dong-Wan Kim, In-Sung Hwang, S. Joon Kwon, Hae-Yong Kang,Kyung-Soo Park, Young-Jin Choi, NANO LETTERS, vol.7 (2007) 3041-3045. [46] A. Kolmakov, Y.X. Zhang, G.S. Cheng, M. Moskovits, Adv. Mater., vol.15 (2003) 997–1000. [47] Chao Li, D.H. Zhang, X.L. Liu, S. Han, T. Tang, J. Han, C.W. Zhou, Appl. Phys. Lett., vol.82 (2003) 1613–1615. [48] Sze, S. M. Physics of Semiconductor Devices (Wiley-Interscience, New York, (1981). [49] Lincoln J. Lauhon, Mark S. Gudiksen, Deli Wang, Charles M. Lieber, NATURE, vol.420 (2002) 57-61. [50] Suhua Luo, Jiyang Fan, Weili Liu, Miao Zhang, NANOTECHNOLOGY, vol. 17 (2006) 1695-1699. [51] Jun Liu, Xiaolong Chen, Wenjun Wang, Bo Song, Qingsong Huang, Crystal Growth & Design, vol. 9 (2009) 1757-1761. [52] Jr H. He, Te H. Wu, Cheng L. Hsin, Kun M. Li, small, vol 2 (2006) 116-120. [53] Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, Z. L. Wang, J. Phys. Chem. B, vol.105 (2001) 2507-2514. [54] Werner Seiferta, Magnus Borgstrom, Knut Deppert, Kimberly A, Journal of Crystal Growth, vol.272 (2004) 211-220. [55] Changhao Liang, Guowen Meng, Yong Lei, Fritz Phillipp, Adv. Mater, vol.13 (2001) 1330-1333. [56] Chao Li, Daihua Zhang, Song Han, Xiaolei Liu, Tao Tang, Adv. Mater, vol.15 (2003) 143-146. [57] Mark S. Gudiksen, Jianfang Wang, Charles M. Lieber, J. Phys. Chem. B, vol.105 (2001) 4062-4064. [58] Yi Cui, Lincoln J. Lauhon, Mark S. Gudiksen, Jianfang Wang, APPLIED PHYSICS LETTERS, vol.78 (2001) 2214-2216. [59] T. F. Chung, L. B. Luo, Z. B. He, Y. H. Leung, I. Shafiq, Z. Q. Yao, APPLIED PHYSICS LETTERS, vol.91 (2007) . [60] E. C. Walter, B. J. Murray, F. Favier, G. Kaltenpoth, M. Grunze, Physical Chemistry B, vol.106 (2002) 11407-11411. [61] Yingjiu Zhang, Hiroki Ago, Jun Liu, Motoo Yumura, Journal of Crystal Growth, vol.264 (2004) 363-368. [62] Weichang Zhou, Anlian Pan, Yun Li, Guozhang Dai, Qiang Wan, Qinglin Zhang, J. Phys. Chem. C, vol.112 (2008) 9253-9260. [63] J.X. Wang, D.F. Liu, X.Q. Yan, H.J. Yuan, Solid state Communications, vol.130 (2004) 89–94. [64] S. Shukla, V. Venkatachalapathy, S. Seal, J. Phys. Chem. B,vol.110 (2006) 11210-11216. [65] Yiqing Chen, Xuefeng Cui, Kun Zhang, Dengyu Pan, Shuyuan Zhang, Chemical Physics Letters, vol.369 (2003) 16-20. [66] Zu Rong Dai, Zheng Wei Pan, Zhong L. Wang, Advanced Functional Materials, vol.13 (2003) 9-24. [67] B. Wang, Y.H. Yang, C.X. Wang, G.W. Yang, Chemical Physics Letters, vol.407 (2005) 347-353. [68] Guoxiu Wang, Jinsoo Park, David Wexler, Min Sik Park, Jung-Ho Ahn , Inorganic Chemistry, vol. 46 (2007) 4778-4780. [69] X.S. Peng, Y.W.Wang, J. Zhang, X.F. Wang, L.X. Zhao, G.W. Meng, L.D. Zhang , Appl. Phys. A, vol.74 (2002) 437-439. [70] Yufeng Hao, Guowen Meng, Changhui Ye, Lide Zhang, Crystal Growth & Design, vol.5 (2005) 1617-1621. [71] Maoqi He, Abhishek Motayed, S. Noor Mohammad, THE JOURNAL OF CHEMICAL PHYSICS, vol.126 (2007) 064704. [72] Zheng Wei Pan, Zu Rong Dai, Chris Ma, Zhong L. Wang, J. Am. Chem., vol.124 (2002) 1817-1822. [73] C. A. Pan and T. P. Ma, J. Electrochem. Soc., vol.128 (1981) 1953-1956. [74] Nicholas M. Lakin, Ger van den Hoek, Ian R. Beattie, John M. Brown, J. Chem. Phys., vol 107 (1997) 4439-4442. [75] Wang Wang, Jinhui Song, Christopher J. Summers, Jae Hyun Ryou,. J. Phys. Chem. B, vol.110 (2006) 7720-7724. [76] Bin Cheng, Joette M. Russell, Shi, Lei Zhang, Edward T. Samulski, J. AM. CHEM. SOC, vol 126 (2004) 5972-5973. [77] Junqing Hu, Yoshio Bando, Quanlin Liu, Dmitri Golberg, Advanced Functional Materials, vol 13 (2003) 493-496. [78] Tsung-Shine Ko, Chia-Pu Chu, Jun-Rong Chen, Tien-Chang Lu, Journal of Crystal Growth, vol.310 (2008) 2264-2267. [79] Jian Yan, Xiaosheng Fang, Lide Zhang, Yoshio Bando, Nano Lett., vol.8 (2008) 2794-2799.
摘要: 
本實驗是以兩階段的氣相傳輸法合成出以SnO2 為主幹,In2O3 為旁支的異
質接合奈米結構。實驗結果發現,將第二階段製程的參數設定為溫度860℃,通
入的Ar 和O2 流量各為100 和5sccm,升溫與持溫中的壓力分別為3x10-1 與1
torr,持溫1 小時後,可以順利合成出旁支的異質接合奈米結構。合成出的SnO2
主幹直徑將近1μm,長度為數十個μm 以上;旁支的奈米線直徑約100~200 nm,
長度約數個μm。透過X 光繞射儀(XRD)與穿透式電子顯微鏡(TEM)的分析,可
證明合成出的異質接合奈米結構的主幹與旁支分別為單晶的SnO2 與In2O3。此
外,經過不同持溫的生長結果、升溫過程的模擬實驗與重新通氧持溫的測試可以
知道,In2O3 旁支奈米結構是透過In 觸媒的自催化生長而形成的。PL 的分析結
果發現,SnO2/In2O3 異質接合奈米結構的發光特性是由外層的In2O3 結構所主
導,受到異質界面處產生的缺陷的影響,其激發光的波長會由513 nm 紅位移至
530 nm。

We reported the synthesis of hetero-nano-structures, whose backbones consisted
of SnO2 and their branches consisted of In2O3, by a two-step vapor transport method.
The branch of nano-structures could be synthesized at the second step, where the
furnace temperature was set at 860℃, the gas flows of Ar and O2 were controlled at
100 and 5 sccm, respectively. The pressures during heating and holding processes
were maintained at 3x10-1 and 1 torr, respectively, and the holding time was kept at
one hour. The diameters of the as-synthesized backbones were about 1 μm, and the
lengths were over several tens of μm. The diameters of the branches were in the range
of 100~200 nm, and the lengths were up to several μm. The XRD and TEM
characterizations showed that the crystal structures of the as-synthesized backbones
and branches were single crystal SnO2 and In2O3, respectively. Furthermore, the
growth mechanism of the In2O3 branches was confirmed to be self-catalytic
vapor–liquid–solid (VLS). The Photoluminescence spectra characterization showed
that the luminescence properties of SnO2/In2O3 hetero-nano-structures were
predominant by the out layer In2O3 structure, and the excitation wavelength changed
from 514 nm to 530 nm because the heterointerface yielded.
URI: http://hdl.handle.net/11455/10658
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.