Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10658
DC FieldValueLanguage
dc.contributor蔡松雨zh_TW
dc.contributor林延儒zh_TW
dc.contributor.advisor何永鈞zh_TW
dc.contributor.author姜慶國zh_TW
dc.contributor.authorChiang, Ching-Kuoen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:45:43Z-
dc.date.available2014-06-06T06:45:43Z-
dc.identifier.citation[1] Z.W. Pan, Z.R. Dai, Z.L. Wang, Science, vol.291 (2001) 1947. [2] Y.X. Chen, L.J. Campbell, W.L. Zhou, J. Crystal Growth, vol.270 (2004) 505. [3] J.S. Jeong, J.Y. Lee, C.J. Lee, S.J. An, G.-C. Yi, Chem. Phys. Lett., vol.384 (2004) P246. [4] Y. Jiang, X.M. Meng, J. Liu, Z.R. Hong, C.S. Lee, S.T. Lee, Adv. Mater., vol.15 (2003) P1195. [5] M.S. Gudiksen, L.J. Lauhon, J.F. Wang, D.C. Smith, C.M. Lieber, Nature, vol.415 (2002) 617. [6] L.J. Lauhon, M.S. Gudiksen, D.L. Wang, C.M. Lieber, Nature, vol.420 (2002) 57. [7] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民編著,「奈米科技導論」, 2005,全華科技圖書出版。 [8] 范光照、黃漢邦、陳炳輝、張所鋐、顏家鈺編著,「奈米工程概論」,2003, 普林斯頓國際有限公司出版。 [9] 葉瑞銘編著,「奈米科技導論」,2004,高立圖書出版。 [10] 馬振基編著,「奈米材料科技原理與應用」, 2004,全華科技圖書出版。 [11] S. Iijima,Nature, vol.354 (1991) 56–58 . [12] 謝嘉民、賴一凡、林永昌、枋志堯編著, 奈米通訊, 第十二卷, 第二期. P28 [13] Rama Venkatasubramanian, Edward Siivola, Thomas Colpitts & Brooks O''Quinn, Nature, vol.413 (2001) 597-602. [14] Ray H. Baughman, Anvar A. Zakhidov, Walt A. de Heer, SCIENCE, vol.297 (2002) 787-792. [15] J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, T. Kunitake, Chem. Mater., vol.17 (2005) 3513-3518. [16] Zheng Wei Pan, Zu Rong Dai, Zhong Lin Wang, SCIENCE, vol.291 (2001) 1947-1949. [17] P. X. Gao, Y. Ding, and Z. L. Wang, NANO LETTERS, vol.3 (2003) 1315-1320. [18] Jingyu Lao, Jianyu Huang, Dezhi Wang, Zhifeng Ren, Adv. Mater., vol.16 (2004) 65-69. [19] Charles M. Lieber, Zhong Lin Wang, MRS BULLETIN, vol.32 (2007), 99-108. [20] Chao Li, Daihua Zhang, Xiaolei Liu, Song Han, Tao Tang, Jie Han, Chongwu Zhou, APPLIED PHYSICS LETTERS, vol.82 (2003) 1613-1615 [21] Y. Li, G. W. Meng, L. D. Zhang, APPLIED PHYSICS LETTERS, vol.76 (2000) 2011-2013. [22] Zheng Miao, Dongsheng Xu, Jianhua Ouyang, Guolin Guo, Xinsheng Zhao, Youqi Tang, NANO LETTERS, vol.2 (2002) 717-720. [23] Yadong Yin,Guangtao Zhang, Younan Xia, Adv. Funct. Mater., vol.12 (2002) 293-298. [24] Zu Rong Dai, Zheng Wei Pan, Zhong L. Wang, Adv. Funct. Mater., vol.13 (2003) 9-24. [25] R.S. Wagner, W.C. Ellis , Appl. Phys. Lett., vol.4 (1964) P89. [26] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater., vol.15 (2003) P353. [27] Xing-Jiu Huang, Yang-Kyu Choi, Sensors and Actuators B, vol.122 (2007) 659–671. [28] D. A. Dikin, X. Chen, W. Ding, G. Wagner, and R. S. Ruoff, JOURNAL OF APPLIED PHYSICS, vol.93(2003) 226-230. [29] Xijian Chen, Huifang Xu, Ningsheng Xu, Inorganic Chemistry, vol.42 (2003) 3100-31063. [30] Maojun Zheng, Guanghai Li, Xinyi Zhang, Shiyong Huang, Yong Lei, Lide Zhang, Chem. Mater. vol.13 (2001) 3859-3861. [31] Z.R Dail,Z.W.Pan,Z.L. Wang Solid State Communication, vol.118 (2001) 351-354. [32] Z. R. Dai, J. L. Gole, J. D. Stout, Z. L. Wang , J. Phys. Chem. B vol.106 (2002) 1274-1279. [33] Andrei Kolmakov,* Youxiang Zhang, Martin Moskovits, NANO LETTERS vol.3 (2003) 1125-1129. [34] Zuqin Liu, Daihua Zhang, Song Han, Chao Li, Tao Tang, Wu Jin, XiaoLiu, Bo Lei,Changwu Zhou, Adv. Mater. vol.5 (2003) 1754-1755. [35] Y.X. Chen, L.J. Campbell, W.L. Zhou, Journal of Crystal Growth vol.270 (2004) 505-510. [36] Maojun Zheng, Lide Zhang , Xinyi Zhang , Jun Zhang , Guanghai Li, Chemical Physics Letters vol.334 (2001) 298-302. [37] J.G. Wen , J.Y. Lao , D.Z. Wang , T.M. Kyaw , Y.L. Foo , Z.F. Ren , Chemical Physics Letters vol.372 (2003) 717-722. [38] Xiang Yang Kong, Zhong Lin Wang , Solid State Communications, vol.128 (2003) 1-4. [39] Jingyu Lao, Jianyu Huang, Dezhi Wang, Zhifeng Ren, Adv. Mater., vol.16 (2004) 65-69. [40] Daihua Zhang, Chao Li, Song Han, Xiaolei Liu, Tao Tang, Wu Jin, and Chongwu Zhou, APPLIED PHYSICS LETTERS, vol.82 (2003) 112-114. [41] Qing Wan, Ming Wei, Dan Zhi, Judith L. Adv. Mater., vol.18 (2006) 234–238. [42] J.X. Wang, H.Y. Chen, Y. Gao, D.F. Liu, L. Song, Journal of Crystal Growth, vol.284 (2005) 73–79. [43] Y. Li_, G. Xu, Y.L. Zhu, X.L. Ma, H.M. Cheng, Solid State Communications, vol.142 (2007) 441–444 [44] A. Vomiero, M. Ferroni, E. Comini, G. Faglia, and G. Sberveglieri, NANO LETTERS, vol.7, (2007) 3553-3558. [45] Dong-Wan Kim, In-Sung Hwang, S. Joon Kwon, Hae-Yong Kang,Kyung-Soo Park, Young-Jin Choi, NANO LETTERS, vol.7 (2007) 3041-3045. [46] A. Kolmakov, Y.X. Zhang, G.S. Cheng, M. Moskovits, Adv. Mater., vol.15 (2003) 997–1000. [47] Chao Li, D.H. Zhang, X.L. Liu, S. Han, T. Tang, J. Han, C.W. Zhou, Appl. Phys. Lett., vol.82 (2003) 1613–1615. [48] Sze, S. M. Physics of Semiconductor Devices (Wiley-Interscience, New York, (1981). [49] Lincoln J. Lauhon, Mark S. Gudiksen, Deli Wang, Charles M. Lieber, NATURE, vol.420 (2002) 57-61. [50] Suhua Luo, Jiyang Fan, Weili Liu, Miao Zhang, NANOTECHNOLOGY, vol. 17 (2006) 1695-1699. [51] Jun Liu, Xiaolong Chen, Wenjun Wang, Bo Song, Qingsong Huang, Crystal Growth & Design, vol. 9 (2009) 1757-1761. [52] Jr H. He, Te H. Wu, Cheng L. Hsin, Kun M. Li, small, vol 2 (2006) 116-120. [53] Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, Z. L. Wang, J. Phys. Chem. B, vol.105 (2001) 2507-2514. [54] Werner Seiferta, Magnus Borgstrom, Knut Deppert, Kimberly A, Journal of Crystal Growth, vol.272 (2004) 211-220. [55] Changhao Liang, Guowen Meng, Yong Lei, Fritz Phillipp, Adv. Mater, vol.13 (2001) 1330-1333. [56] Chao Li, Daihua Zhang, Song Han, Xiaolei Liu, Tao Tang, Adv. Mater, vol.15 (2003) 143-146. [57] Mark S. Gudiksen, Jianfang Wang, Charles M. Lieber, J. Phys. Chem. B, vol.105 (2001) 4062-4064. [58] Yi Cui, Lincoln J. Lauhon, Mark S. Gudiksen, Jianfang Wang, APPLIED PHYSICS LETTERS, vol.78 (2001) 2214-2216. [59] T. F. Chung, L. B. Luo, Z. B. He, Y. H. Leung, I. Shafiq, Z. Q. Yao, APPLIED PHYSICS LETTERS, vol.91 (2007) . [60] E. C. Walter, B. J. Murray, F. Favier, G. Kaltenpoth, M. Grunze, Physical Chemistry B, vol.106 (2002) 11407-11411. [61] Yingjiu Zhang, Hiroki Ago, Jun Liu, Motoo Yumura, Journal of Crystal Growth, vol.264 (2004) 363-368. [62] Weichang Zhou, Anlian Pan, Yun Li, Guozhang Dai, Qiang Wan, Qinglin Zhang, J. Phys. Chem. C, vol.112 (2008) 9253-9260. [63] J.X. Wang, D.F. Liu, X.Q. Yan, H.J. Yuan, Solid state Communications, vol.130 (2004) 89–94. [64] S. Shukla, V. Venkatachalapathy, S. Seal, J. Phys. Chem. B,vol.110 (2006) 11210-11216. [65] Yiqing Chen, Xuefeng Cui, Kun Zhang, Dengyu Pan, Shuyuan Zhang, Chemical Physics Letters, vol.369 (2003) 16-20. [66] Zu Rong Dai, Zheng Wei Pan, Zhong L. Wang, Advanced Functional Materials, vol.13 (2003) 9-24. [67] B. Wang, Y.H. Yang, C.X. Wang, G.W. Yang, Chemical Physics Letters, vol.407 (2005) 347-353. [68] Guoxiu Wang, Jinsoo Park, David Wexler, Min Sik Park, Jung-Ho Ahn , Inorganic Chemistry, vol. 46 (2007) 4778-4780. [69] X.S. Peng, Y.W.Wang, J. Zhang, X.F. Wang, L.X. Zhao, G.W. Meng, L.D. Zhang , Appl. Phys. A, vol.74 (2002) 437-439. [70] Yufeng Hao, Guowen Meng, Changhui Ye, Lide Zhang, Crystal Growth & Design, vol.5 (2005) 1617-1621. [71] Maoqi He, Abhishek Motayed, S. Noor Mohammad, THE JOURNAL OF CHEMICAL PHYSICS, vol.126 (2007) 064704. [72] Zheng Wei Pan, Zu Rong Dai, Chris Ma, Zhong L. Wang, J. Am. Chem., vol.124 (2002) 1817-1822. [73] C. A. Pan and T. P. Ma, J. Electrochem. Soc., vol.128 (1981) 1953-1956. [74] Nicholas M. Lakin, Ger van den Hoek, Ian R. Beattie, John M. Brown, J. Chem. Phys., vol 107 (1997) 4439-4442. [75] Wang Wang, Jinhui Song, Christopher J. Summers, Jae Hyun Ryou,. J. Phys. Chem. B, vol.110 (2006) 7720-7724. [76] Bin Cheng, Joette M. Russell, Shi, Lei Zhang, Edward T. Samulski, J. AM. CHEM. SOC, vol 126 (2004) 5972-5973. [77] Junqing Hu, Yoshio Bando, Quanlin Liu, Dmitri Golberg, Advanced Functional Materials, vol 13 (2003) 493-496. [78] Tsung-Shine Ko, Chia-Pu Chu, Jun-Rong Chen, Tien-Chang Lu, Journal of Crystal Growth, vol.310 (2008) 2264-2267. [79] Jian Yan, Xiaosheng Fang, Lide Zhang, Yoshio Bando, Nano Lett., vol.8 (2008) 2794-2799.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10658-
dc.description.abstract本實驗是以兩階段的氣相傳輸法合成出以SnO2 為主幹,In2O3 為旁支的異 質接合奈米結構。實驗結果發現,將第二階段製程的參數設定為溫度860℃,通 入的Ar 和O2 流量各為100 和5sccm,升溫與持溫中的壓力分別為3x10-1 與1 torr,持溫1 小時後,可以順利合成出旁支的異質接合奈米結構。合成出的SnO2 主幹直徑將近1μm,長度為數十個μm 以上;旁支的奈米線直徑約100~200 nm, 長度約數個μm。透過X 光繞射儀(XRD)與穿透式電子顯微鏡(TEM)的分析,可 證明合成出的異質接合奈米結構的主幹與旁支分別為單晶的SnO2 與In2O3。此 外,經過不同持溫的生長結果、升溫過程的模擬實驗與重新通氧持溫的測試可以 知道,In2O3 旁支奈米結構是透過In 觸媒的自催化生長而形成的。PL 的分析結 果發現,SnO2/In2O3 異質接合奈米結構的發光特性是由外層的In2O3 結構所主 導,受到異質界面處產生的缺陷的影響,其激發光的波長會由513 nm 紅位移至 530 nm。zh_TW
dc.description.abstractWe reported the synthesis of hetero-nano-structures, whose backbones consisted of SnO2 and their branches consisted of In2O3, by a two-step vapor transport method. The branch of nano-structures could be synthesized at the second step, where the furnace temperature was set at 860℃, the gas flows of Ar and O2 were controlled at 100 and 5 sccm, respectively. The pressures during heating and holding processes were maintained at 3x10-1 and 1 torr, respectively, and the holding time was kept at one hour. The diameters of the as-synthesized backbones were about 1 μm, and the lengths were over several tens of μm. The diameters of the branches were in the range of 100~200 nm, and the lengths were up to several μm. The XRD and TEM characterizations showed that the crystal structures of the as-synthesized backbones and branches were single crystal SnO2 and In2O3, respectively. Furthermore, the growth mechanism of the In2O3 branches was confirmed to be self-catalytic vapor–liquid–solid (VLS). The Photoluminescence spectra characterization showed that the luminescence properties of SnO2/In2O3 hetero-nano-structures were predominant by the out layer In2O3 structure, and the excitation wavelength changed from 514 nm to 530 nm because the heterointerface yielded.en_US
dc.description.tableofcontents致謝……………………………………………………………………………. I 中文摘要………………………………………………………………………. II 英文摘要………………………………………………………………………. III 目錄……………………………………………………………………………. IV 圖目錄…………………………………………………………………………. VI 表目錄…………………………………………………………………………. IX 第一章 緒論…………………………………………………………………... 1 第二章 文獻回顧……………………………………………………………... 2 2.1 奈米科技的發展…………………………………………………………… 2 2.2 奈米材料的物理效應 …………………………………………………… 3 2.3 奈米材料的特性…………………………………………………………… 5 2.4 奈米材料的分類…………………………………………………………… 7 2.4.1 零維奈米材料…………………………………………………………… 7 2.4.2 二維奈米材料…………………………………………………………… 8 2.4.3 一維奈米材料…………………………………………………………… 10 2.5 一維奈米材料的製備方式………………………………………………… 12 2.5.1 水熱法…………………………………………………………………… 12 2.5.2 熱蒸發法………………………………………………………………… 13 2.6 一維奈米線的生長機制 ………………………………………………… 16 2.6.1 VLS( Vapor-Liquid-Solid )成長機制…………………………………… 16 2.6.2 VS( Vapor -Solid )成長機制 …………………………………………… 18 2.7 二氧化錫與氧化銦的特性……………………………………………… 18 2.7.1 二氧化錫………………………………………………………………… 18 2.7.2 氧化銦…………………………………………………………………… 19 2.8 SnO2 - In2O3 的異質接合 ………………………………………………… 20 2.9 研究動機 ………………………………………………………………… 23 2.10 目的……………………………………………………………………… 24 第三章實驗方法與步驟 ……………………………………………………… 25 3.1 實驗設計與流程 ………………………………………………………… 25 3.2 基板的前置業…………………………………………………………….. 27 3.2.1 基板的清洗……………………………………………………………… 27 3.2.2 基板鍍金………………………………………………………………… 27 3.3 熱蒸發法…………………………………………………………………. 27 3.3.1 第一階段製程-主幹SnO2 奈米線……………………………………… 28 3.3.2 第二階段製程-外層In2O3 奈米線……………………………………… 29 3.5 X 光繞射儀(XRD)分析…………………………………………………… 30 3.6 場發射掃描式電子顯微鏡(FE-SEM) …………………………………… 30 3.7 穿透式電子顯微鏡(TEM) ……………………………………………… 31 3.8 光激發光(PL)檢測 ……………………………………………………… 31 第四章實驗結果與分析……………………………………………………… 33 4.1 第一階段試片的準備 …………………………………………………... 33 4.1.1 第一階段製程…………………………………………………………… 33 4.1.2 SnO2 奈米線的晶體結構分析………………………………………...... 34 4.2 第二階段製程……………………………………………………………… 35 4.2.1 爐管溫度的影響…………………………………………………………35 4.2.2 金觸媒的影響…………………………………………………………… 38 4.2.3 基板擺放位置的影響…………………………………………………… 40 4.2.4 持溫時間的影響………………………………………………………… 43 4.3 SnO2/ In2O3 旁支狀異質接合奈米結構的晶體結構分析……………… 46 4.4 SnO2/In2O3 旁支狀異質奈米結構的生長機制…………………………… 48 4.5 SnO2/In2O3 旁支異質接合奈米結構之光激發光(PL)特性……………… 58 第五章 結論. …………………………………………………………………… 61 參考文獻. ……………………………………………………………………… 62zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.subjectSnO2en_US
dc.subject氧化錫zh_TW
dc.subjectIn2O3en_US
dc.subjectNanowireen_US
dc.subjectHeterostructureen_US
dc.subjectPhotoluminescenceen_US
dc.subject氧化銦zh_TW
dc.subject奈米線zh_TW
dc.subject異質結構zh_TW
dc.subject光激發光zh_TW
dc.title在SnO2 奈米線外自催化生長In2O3 的旁支異質奈米結構及其激發光特性之研究zh_TW
dc.titleThe self-catalystic branch growth and photoluminescence study of SnO2/In2O3 hetero-nano-structureen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.