Please use this identifier to cite or link to this item:
標題: 塑膠基材阻氣性鍍膜之設計、製作與應用
Design, Fabrication and Applications of Gas Barrier Coatings on Polymer Substrates
作者: 陳采寧
Chen, Tsai-Ning
關鍵字: barrier;阻氣層;silicon nitride;parylene;calcium test;polymer solar cell;氮化矽;聚-對二甲苯;鈣測法;高分子太陽能電池
出版社: 材料科學與工程學系所
引用: [1] P. J. G. van Lieshout, H. E. A. Huitema, E. Van Veenendaal, L. R. R. Schrijnemakers, G. H. Gelinck, F. J. Touwslager, and E. Cantatore, Society for Information Display, Digest of Technical Papers, vol. 35, p. 1290 (2004). [2] L. S. Hung and C. H. Chen, “Recent progress of molecular organic electroluminescent materials and devices” Mater. Sci. Eng. R, vol. 39, pp.143-222 (2002). [3] H. Kikuchi, T. Negishi, and R. Gardner, “Organic EL element manufacturing technologies” Displays, vol. 22, pp. 57-59 (2001). [4] H. Lifka, H. A. van Esch, and J. J. W. M. Rosink, Society for Information Display, Digest of Technical Papers, vol. 35, p. 1384 (2004). [5] S. Cros, S. Guillerez, R. D. Bettignies, N. Lemauâtre, S. Bailly, and P. Maisse, “Relationship between encapsulation barrier performance and organic solar cell lifetime” Proc. SPIE, vol. 7048, p. 70480U (2008). [6] P. Mandlik, J. Gartside, L. Han, I. C. Cheng, S. Wagner, J. A. Silvernail, R. Q. Ma, M. Hack, and J. J. Brown, “A single-layer permeation barrier for organic light-emitting displays” Appl. Phys. Lett., vol. 92, pp. 103309 (2008). [7] L. Moro, N. M. Rutherford, R. J. Visser, J. A. Hauch, C. Klepek, P. Denk, P. Schilinsky, and C. J. Brabec, “Barix multilayer barrier technology for organic solar cells” Proc. SPIE, vol. 6334, p. 63340M (2006). [8] D. Rats, V. Hajek, and L. Martinu, “Micro-scratch analysis and mechanical properties of plasma-deposited silicon-based coatings on polymer substrates” Thin Solid Films, vol. 340, pp. 33-39 (1999). [9] C. C. Lee, J. C. Hsu, and C. C. Jaing, “Optical coatings on polymethyl methacrylate and polycarbonate” Thin Solid Films, vol. 295, pp. 122-124 (1997). [10] D. Katsamberis, K. Browall, C. Iacovangelo, M. Neumann, and H. Morgner, “Highly durable coatings for automotive polycarbonate glazing” Prog. Org. Coat., vol. 34, pp. 130-134 (1998). [11] N. Laidani, G. Speranza, A. Nefedov, I. Calliari, and M. Anderle, “Characterization of carbon and zirconia films deposited on polycarbonate for scratch-proof coating applications” Diamond Relat. Mater., vol. 7, pp. 1394-1402 (1998). [12] J. C. Rostaing, F. Coeuret, B. Drevillon, R. Etemadi, C. Godet, J. Huc, J. Y. Parey, and V. Yakovlev, “Silicon-based, protective transparent multilayer coatings deposited at high rate on optical polymers by dual-mode MW/r.f. PECVD” Thin Solid Films, vol. 236, pp. 58-63 (1993). [13] D. S. Wuu, W. C. Lo, C. C. Chiang, H. B. Lin, L. S. Chang, R. H. Horng, C. L. Huang, and Y. J. Gao, “Water and oxygen permeation of silicon nitride films prepared by plasma-enhanced chemical vapor deposition” Surf. Coat. Technol., vol. 198, pp. 114-117 (2005). [14] J. Lange and Yves Wyser, “Recent innovations in barrier technologies for plastic packaging - a review” Packag. Technol. Sci., vol. 16, pp. 149-158 (2003). [15] G. Erlat, B. M. Henry, J. J. Ingram, D. B. Mountain, A. McGuigan, R. P. Howson, C. R. M. Grovenor, G. A. D. Briggs, and Y. Tsukahara, “Characterisation of aluminium oxynitride gas barrier films” Thin Solid Films, vol. 388, pp. 78-86 (2001). [16] Y. Leterrier, “Durability of nanosized oxygen-barrier coatings on polymers” Prog. in Mater. Sci., vol. 48, pp. 1-55 (2003). [17] A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, “Organic light-emitting devices for illumination quality white light” Appl. Phys. Lett., vol. 80, pp. 3470-3472 (2002). [18] A. Chwang, M. A. Rothman, S. Y. Mao, R. H. Hewitt, M. S. Weaver, J. A. Silvernail, K. Rajan, M. Hank, J. J. Brown, X. Chu, L. Moro, T. Krajewski, and N. Rutherford, “Thin film encapsulated flexible organic electroluminescent displays” Appl. Phys. Lett., vol. 83, pp. 413-415 (2003). [19] L. Ke, S. J. Chua, K. Zhang, and N. Yakovlev, “Degradation and failure of organic light-emitting devices” Appl. Phys. Lett., vol. 80, pp. 2195-2197 (2002). [20] S. D. Theiss and S. Wagner, “Amorphous silicon thin-film transistors on steel foil substrates” IEEE Electron Device Lett., vol. 17, pp. 578-580 (1996). [21] T. Serikawa and F. Omata, “High-mobility poly-Si TFTs fabricated on flexible stainless-steel substrates” IEEE Electron Device Lett., vol. 20, pp. 574-576 (1999). [22] J. S. Lewis and M. S. Weaver, “Thin-film permeation-barrier technology for flexible organic light-emitting devices” IEEE J. Quantum Electron., vol. 10, pp. 45-57 (2004). [23] T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, “Stretchable active-matrix organic light-emitting diode display usingprintable elastic conductors” Nat. Mater., vol. 8, pp. 494 - 499 (2009). [24] G. Gu, P. E. Burrow, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “Vacuum-deposited, nonpolymeric flexible organic light-emitting devices” Opt. Lett., vol. 22, pp. 172-174 (1997). [25] J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers” Nature, vol. 347, pp. 539-541 (1990). [26] B. H. Cumpston, I. D. Parker, and K. F. Jensen, “In situ characterization of the oxidative degradation of a polymeric light emitting device” Journal of Applied Physics, vol. 81, pp. 3716-3720 (1997). [27] M. Hanika, H. C. Langowski, and W. Peukert, 46th Annual Technical Conference Proceedings, Society of Vacuum Coaters, p. 592 (2003). [28] D. S. Wuu, T. N. Chen, C. C. Chiang, C. C. Wu, H. B. Lin, Y. P. Chen, W. C. Chen, and F. S. Juang, Proceedings of the International Conference on Solid State Devices and Materials, p. 964 (2005). [29] H. Chatham, “Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates” Surf. Coat. Technol., vol. 78, pp. 1-9 (1996). [30] S. Pauly, J. Brandrupt, and E. H. Immergut, in Polymer Handbook, 4th edition, edited by J. Brandrup, E. H. Immergut, and E. A. Grulke, John Wiley & Sons Ltd, New York (1999). [31] B. M. Henry, F. Dinelli, K. Y. Zhao, C. R. M. Grovenor, O. V. Kolosov, G. A. D. Briggs, A. P. Robertsa, R. S. Kumarb, and R. P. Howson, “A microstructural study of transparent metal oxide gas barrier films” Thin Solid Films, vol. 355-356, pp. 500-505 (1999). [32] D. S. Wuu, W. C. Lo, C. C. Chiang, H. B. Lin, L. S. Chang, R. H. Horng, C. L. Huang, and Y. J. Gao, “Transparent barrier coatings on flexible polyethersulfone substrates for moisture-resistant applications” Mater. Sci. Forum., vol. 475-479, pp. 4017-4020 (2005). [33] K. S. Miller and J. M. Krochta, “Oxygen and aroma barrier properties of edible films: A review” Trends Food Sci. Technol., vol. 8, pp. 228-237 (1997). [34] J. Meyer, P. Gӧrrn, F. Bertram, S. Hamwi, T. Winkler, H. H. Johannes, T. Weimann, P. Hinze, T. Riedl, and W. Kowalsky, “Al2O3/ZrO2 nanolaminates as ultrahigh gas-diffusion barriers- a strategy for reliable encapsulation of organic electronics” Adv. Mater., vol. 21, pp. 1-5 (2009). [35] M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, “Organic light-emitting devices with extended operating lifetimes on plastic substrates” Appl. Phys. Lett., vol. 81, pp. 2929-2931 (2002). [36] G. Garcia-Ayuso, L. Vhzquez, and J. M. Martinez-Duart, “Atomic force microscopy (AFM) morphological surface characterization of transparent gas barrier coatings on plastic films” Surf. Coat. Technol., vol. 80, pp. 203-206 (1996). [37] J. Weiss, “Parameters that influence the barrier properties of metallized polyester and polypropylene films” Thin Solid Films, vol. 204, pp. 203-216 (1991). [38] M. Schaepkens, T. W. Kim, A. G. Erlet, M. Yan, K. W. Flanagan, C. M. Heller, and P. A. McConnelee, “Ultrahigh barrier coating deposition on polycarbonate substrates” J. Vac. Sci. Technol. A, vol. 22, pp. 1716-1722 (2004). [39] D. S. Wuu, T. N. Chen, C. C. Wu, C. C. Chiang, Y. P. Chen, R. H. Horng, and F. S. Juang, “Transparent barrier coatings for flexible organic light-emitting diode applications” Chem. Vap. Deposition, vol. 12, pp. 220-224 (2006). [40] S. Iwamori, Y. Gotoh, and K. Moorthi, “Silicon oxide gas barrier films deposited by reactive sputtering” Surf. Coat. Technol., vol. 166, pp. 24-30 (2003). [41] B. M. Henry, A. G. Erlat, A. McGuigan, C. R. M. Grovenor, G. A. D. Briggs, Y. Tsukahara, T. Miyamoto, N. Noguchi, and T. Niijima, “Characterization of transparent aluminium oxide and indium tin oxide layers on polymer substrates” Thin Solid Films, vol. 382, pp. 194-201 (2001). [42] A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, “Flexible OLED displays using plastic substrates” IEEE J. Quantum Electron., vol. 10, pp. 107-114 (2004). [43] D. S. Wuu, W. C. Lo, L. S. Chang, and R. H. Horng, “Properties of SiO2-like barrier layers on polyethersulfone substrates by low-temperature plasma-enhanced chemical vapor deposition” Thin Solid Films, vol. 468, pp. 105-108 (2004). [44] D. S. Wuu, W. C. Lo, C. C. Chiang, H. B. Lin, L. S. Chang, R. H. Horng, C. L. Huang, and Y. J. Gao, “Plasma-deposited silicon oxide barrier films on polyethersulfone substrates: temperature and thickness effects” Surf. Coat. Technol., vol. 197, pp. 253-259 (2005). [45] A. S. da Silva Sobrinho, G. Czeremuszkin, M. Latrèche, and M. R. Wertheimer, “Defect-permeation correlation for ultrathin transparent barrier coatings on polymers” J. Vac. Sci. Technol. A, vol. 18, pp. 149-157 (2000). [46] R. Cueff, G. Baud, M. Benmalelc, J. P. Besse, J. R. Butruille, and M. Jacquet, “Alumina coatings on polyethylene terephthalate: characterisation and X-ray photoelectron spectroscopy study” Surf. Coat. Technol., vol. 80, pp. 96-99 (1996). [47] G. A. Abbas, J. A. McLaughlin, and E. Harkin-Jones, “A study of ta-C, a-C:H and Si-a:C:H thin films on polymer substrates as a gas barrier” Diamond Relat. Mater., vol. 13, pp. 1342-1345 (2004). [48] B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon” J. Appl. Phys., vol. 36, pp. 3770-3777 (1965). [49] A. S. da Silva Sobrinho, G. Czeremuszkin, M. Latrèche, and M. R. Wertheimer, Materials Research Society Symposium Proceedings, vol. 544, p. 245 (1999). [50] N. Kim, W. J. Potscavage, Jr., B. Domercq, B. Kippelen, and S. Graham, “A hybrid encapsulation method for organic electronics” Appl. Phys. Lett., vol. 94, pp. 163308 (2009) [51] T. W. Kim, M. Yan, A. G. Erlat, P. A. McConnelee, M. Pellow, J. Deluca, T. P. Feist, and A. R. Duggal, “Transparent hybrid inorganic/organic barrier coatings for plastic organic light-emitting diode substrates” J. Vac. Sci. Technol. A, vol. 23, pp. 971-977 (2005). [52] A. A. Dameron, S. D. Davidson, B. B. Burton, P. F. Carcia, R. S. McLean, and S. M. George, “Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition” J. Phys. Chem. C, vol. 112, pp. 4573-4580 (2008). [53] H. C. Langowski, 46th Annual Technical Conference Proceedings, Society of Vacuum Coaters, p. 559 (2003). [54] R. F. Bianchi, D. T. Balogh, M. Tinani, R. M. Faria, and E. A. Irene, “Ellipsometry study of the photo-oxidation of poly[(2-methoxy-5-hexyloxy)- p-phenylenevinylene]” J. Pol. Science B: Polymer Physics, vol. 2, pp. 1033-1041 (2004). [55] H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview” J. Mater. Res., vol. 19, pp.1924-1945 (2004). [56] G. Dennler and N. S. Sariciftci, “Flexible conjugated polymer-based plastic solar cells: from basics to applications” Proceedings of the IEEE, vol. 93, pp. 1429-1439 (2005). [57] P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells” J. Appl. Phys., vol. 93, pp. 3693-3723 (2003). [58] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends” Nat. Mater, vol. 4, pp. 864-868 (2005). [59] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology” Adv. Funct. Mater. 15, pp. 1617-1622 (2005). [60] W. J. Potscavage, S. Yoo, B. Domercq, and B. Kippelen, “Encapsulation of pentacene/C60 organic solar cells with Al2O3 deposited by atomic layer deposition” Appl. Phys. Lett., vol. 90, pp. 253511 (2007). [61] C. Lungenschmied, G. Dennler, H. Neugebauer, N. S. Sariciftci, M. Glatthaar, T. Meyer, and A. Meyer, “Flexible, long-lived, large-area, organic solar cells” Sol. Energy Mater. Sol. Cells, vol. 91, pp. 379-384 (2007). [62] H. Hoppe, M. Niggemann, C. Winder, J. Krant, R. Hiesgen, A. Hinsch, D. Meissner, and S. Saricifci, “Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells” Adv. Funct. Mater., vol.14, pp. 1005-1011 (2004). [63] Paul W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device physics of polymer: fullerene bulk heterojunction solar cells” Adv. Mater., vol. 19, pp. 1551-1566 (2007). [64] T. Martens, J. D, '' Haen, T. Munters, Z. Beelen, L. Goris, J. Manca, M. D''Olieslaeger, D. Vanderzande, L. De Schepper, and R. Andriessen, “Disclosure of the nanostructure of MDMO-PPV:PCBM bulk hetero-junction organic solar cells by a combination of SPM and TEM” Synth. Met., vol. 138, pp. 243-247 (2003). [65] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene” Science, vol. 258, pp. 1474-1476 (1992). [66] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells” Appl. Phys. Lett., vol. 78, pp. 841-843 (2001). [67] J. Liu, Y. Shi, and Y. Yang, “Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices” Adv. Func. Mater., vol. 11, pp. 420-424 (2001). [68] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution [69] K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, and J. R. Durrant, “Degradation of organic solar cells due to air exposure” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 3520-3530 (2006). [70] G. Dennler, C. Lungenschmied, H. Neugebauer, N. S. Sariciftci, M. Latrèche, G. Czeremuszkin, and M. R. Wertheimer, “A new encapsulation solution for flexible organic solar cells” Thin Solid Films, vol. 511, pp. 349-353 (2006). [71] H. Neugebauer, C. Brabec, J. C. Hummelen, and N. S. Sariciftci, “Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells” Sol. Energy Mater. Sol. Cells, vol. 61, pp. 35-42 (2000). [72] F. C. Krebs and H. Spanggaard, “Significant improvement of polymer solar cell stability” Chem. Mater., vol. 17, pp. 5235-5237 (2005). [73] M. Jørgensen, K. Norrman and F. C. Krebs, “Stability/degradation of polymer solar cells” Sol. Energy Mater. Sol. Cells, vol. 92, pp. 686-714 (2008). [74] R. Pacios, A. J. Chatten, K. Kawano, J. R. Durrant , D. D. C. Bradley , and J. Nelson, “Effects of photo-oxidation on the performance of poly [2-methoxy-5-(3', 7'- dimethyloctyloxy)-1,4-phenylene vinylene]:[6,6]- phenyl C61-butyric acid methyl ester solar cells” Adv. Funct. Mater., vol. 16, pp. 2117-2126 (2006). [75] F. C. Krebs and K. Norrman, “Analysis of the failure mechanism for a stable organic photovoltaic during 10000 h of testing” Prog. Photovolt: Res. Appl., vol. 15, pp. 697-712 (2007). [76] L. H. Sperling, in Introduction to physical polymer science, 3rd edition, John Wiley & Sons, Canada (2001). [77] Y. G. Tropsha and N. G. Harvey, “Activated rate theory treatment of oxygen and water transport through silicon oxide/poly(ethylene terephthalate) composite barrier structures” J. Phys. Chem. B, vol. 101, pp. 2259-2266 (1997) [78] J. T. Felts, 34th Annual Technical Conference Proceedings, Society of Vacuum Coaters, p. 184 (1991). [79] R. M. Barrer, in Diffusion in and through Solids, Cambridge University Press, New York (1941). [80] A. S. da Silva Sobrinho, M. Latrèche, G. Czeremuszkin, J. E. Klemberg-Sapieha, and M. R. Wertheimer, “Transparent barrier coatings on polyethylene terephthalate by single- and dual-frequency plasma-enhanced chemical vapor deposition” J. Vac. Sci. Technol. A, vol. 16, pp. 3190-3198 (1998). [81] J. T. Felts and A. D. G rubb, “Commercial-scale application of plasma processing for polymeric substrates: from laboratory to production” J. Vac. Sci. Technol. A, vol. 10, pp. 1675-1681 (1992). [82] W. Prins and J. J. Hermans, “Theory of permeation through metal coated polymer films” J. Phys. Chem., vol. 63, pp. 716-720 (1959). [83] J. Greener, K. C. Ng, K. M. Vaeth, and T. M. Smith, “Moisture permeability through multilayered barrier films as applied to flexible OLED display” J. Appl. Polymer Sci., vol. 106, pp. 3534-3542 (2007) [84] J. Crank, in The Mathematics of Diffusion, 2nd edition, Clarendon Press, Oxford (1975). [85] G. L. Graff, P. E. Burrows, R. E. Williford, and R. F. Praino, in Flexible Flat Panel Display, edited by G. P. Crawford, John Wiley & Sons Ltd, Chichester (2005). [86] G. L. Graff. R. E. Williford, and P. E. Burrows, “Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation” J. Appl. Phys., vol. 96, pp. 1840-1848 (2004). [87] E. H. H. Jamieson and A. H. Windle, “Structure and oxygen-barrier properties of metallized polymer film” J. Mater. Sci., vol. 18, pp. 64-80 (1983). [88] P. Schilinsky, C. Waldauf, and C. J. Brabec, “Performance analysis of printed bulk heterojunction solar cells” Adv. Funct. Mater., vol. 16, pp. 1669-1672 (2006). [89] K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells” Chem. Mater., vol. 16, pp. 4533-4542 (2004). [90] T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers” Appl. Phys. Lett., vol. 92, pp. 033306 (2008). [91] Frederik C. Krebs, “Pad printing as a film forming technique for polymer solar cells” Sol. Energy Mater. Sol. Cells, vol. 93, pp. 484-490 (2009). [92] Frederik C. Krebs, “Fabrication and processing of polymer solar cells: A review of printing and coating techniques” Sol. Energy Mater. Sol. Cells, vol. 93, pp. 394-412 (2009). [93] C. J. Brabec, J. A. Hauch, P. Schilinsky, and C. Waldauf, “Production aspects of organic photovoltaics and their impact on the commercialization of devices” MRS Bull., vol. 90, pp. 50-52 (2005). [94] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks” Nature, vol. 376, pp. 498-500 (1995). [95] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions” Science, vol. 270, pp. 1789-1791(1995). [96] C. J. Brabec, G. Zerza, G. Cerullo, S. De Silvestri, S. Luzzati, J. C. Hummelen, and S. Sariciftci, “Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time” Chem. Phys. Lett., vol. 340, pp. 232-236 (2001). [97] J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer” Adv. Mater., vol. 18, pp. 572-576 (2006). [98] R. Li, L. Ye, and Y. W. Mai, “Application of plasma technologies in reinforced-reinforced polymer composites: A review of recent developments” Composites A, vol. 28, pp. 73-86 (1997). [99] L. Martinu, J. E. Klemberg-Sapieha, O. M. Kqttel, A. Raveh, and M. R. Wertheimer, “Critical ion energy and ion flux in the growth of films by plasma-enhanced chemical-vapor deposition” J. Vac. Sci. Technol. A, vol. 12, pp. 1360-1364 (1994). [100] H. Kim and K. Naiafi, “Characterization of low-temperature wafer bonding using thin-film parylene” J. Microelectromech. Syst., vol. 14, pp. 1347-1355 (2005). [101] D. Martini, K. Shepherd, R. Sutcliffe, J. Kelber, H. Edwards, and R. San Martin, “Modification of parylene AF-4 surfaces using activated water vapor” Appl. Surf. Sci., vol. 141, pp. 89-100 (1999). [102] M. Morgen, S. H. Rhee, J. H. Zhao, I. Malik, T. Ryan, H. M. Ho, M. A. Plano, and P. Ho, “Comparison of crystalline phase transitions in fluorniated vs nonfluorinated parylene thin films” Macromolecules, vol. 32, pp. 7555-7561 (1999). [103] D. Mathur, G. R. Yang, and T. M. Lu, “Vapor deposition of parylene-F using hydrogen as carrier gas” J. Mater. Res., vol. 14, pp. 246-250 (1999). [104] G. G. Stoney, “The tension of metallic films deposited by electrolysis” Proc. R. Soc. London Ser. A, vol. 82, pp. 172-175 (1909). [105] C. A. Taylor, M. F. Wayne, and W. K. S. Chiu, “Residual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation” Thin Solid Films, vol. 429, pp. 190-200 (2003). [106] T. Z. Kattamis, M. Chen, S. Skolianos, and B. V. Chambers, “Effect of residual stresses on the strength, adhesion and wear resistance of SiC coatings obtained by plasma-enhanced chemical vapor deposition on low alloy steel” Surf. Coat. Technol., vol. 70, pp. 43-48 (1994). [107] Y. C. Huang, S. Y. Chang, and C. H. Chang, “Effect of residual stresses on mechanical properties and interface adhesion strength of SiN thin films” Thin Solid Films, vol. 517, pp. 4857-4861 (2009). [108] R. S. Kumar, M. Auch, E. Ou, G. Ewald, and C. S. Jin, “Low moisture permeation measurement through polymer substrates for organic light emitting devices” Thin Solid Films, vol. 417, pp. 120-126 (2002). [109] R. Paetzold, A. Winnacker, D. Henseler, V. Cesari, and K. Heuse, “Permeation rate measurements by electrical analysis of calcium corrosion” Rev. Sci. Instrum., vol. 74, pp. 5147-5150 (2003). [110] J. H. Choi, Y. M. Kim, Y. W. Park, J. W. Huh, and B. K. Ju, “Evaluation of gas permeation barrier properties using electrical measurements of calcium degradation” Rev. Sci. Instrum., vol. 78, pp. 064701-064705 (2007). [111] D. Chahroudi, 34th Annual Technical Conference Proceedings, Society of Vacuum Coaters, p. 130 (1991). [112] G. Hoffmann, R. Ludwig, J. Meinel, and G. Steiniger, 37th Annual Technical Conference Proceedings, Society of Vacuum Coaters, p. 155 (1993). [113] W. Lohwasser, O. Frei, H. Severus, and A. Wisard, 38th Annual Technical Conference Proceedings, Society of Vacuum Coaters, p. 40 (1995). [114] J. D. Affinito, M. E. Gross, C. A. Coronado, G. L. Graff, I. N. Greenwell, and P. M. Martin, “A new method for fabricating transparent barrier layers” Thin Solid Films, vol. 290-291, pp. 63-67 (1996). [115] W. F. Wu and B. S. Chiou, “Properties of radio frequency magnetron sputtered silicon dioxide films” Appl. Surf. Sci., vol. 99, pp. 237-243 (1996). [116] M. Bose, D. N. Bose, and D. K. Basa, “Plasma enhanced growth, composition and refractive index of silicon oxynitride films” Mater. Lett., vol. 52, pp. 417-422 (2002). [117] E. M. Moser, R. Urech, E. Hack, H. Künzli, and E. Müller, “Hydrocarbon films inhibit oxygen permeation through plastic packaging material” Thin Solid Films, vol. 317, pp. 388-392 (1998). [118] K. Teshima, Y. Inoue, H. Sugimura, and O. Takai, “Reduction of carbon impurities in silicon oxide films prepared by rf plasma-enhanced CVD” Thin Solid Films, vol. 390, pp. 88-92 (2001). [119] S. J. Ding, D. W. Zhang, J. T. Wang, and W. W. Lee, “Low dielectric constant SiO2:C,F films prepared from Si(OC2H5)4/C4F8/Ar by plasma-enhanced CVD” Chem. Vap. Deposition, vol. 7, pp. 142-146 (2001). [120] E. M. Liston, L. Martinu, and M. R. Wertheimer, “Plasma surface modification of polymers for improved adhesion: a critical review” J. Adhesion Sci. Technol., vol. 7, pp. 1091-1127 (1993). [121] D. Hegemann, H. Brunner, and C. Oehr, “Plasma treatment of polymers for surface and adhesion improvement” Nucl. Instrum. Methods Phys. Res. B, vol. 208, pp. 281-286 (2003). [122] M. M. Schafer, C. Seidel, H. Fuchs, and M. Voetz, “The suppression of water-diffusion in polycarbonate through Ar- and He-plasma as a new model for the origin of improved adhesion of Al” Appl. Surf. Sci., vol. 173, pp. 1-7 (2001). [123] J. E. Klemberg-Sapieha, D. Poitras, L. Martinu, N. L. S. Yamasaki, C.W. Lantman, “Effect of interface on the characteristics of functional films deposited on polycarbonate in dual-frequency plasma” J. Vac. Sci. Technol. A, vol. 15, pp. 985-991 (1997). [124] S. Vallon, B. Drévillon, F. Poncin-Epaillard, J. E. Klemberg-Sapieha, and L. Martinu, “Argon plasma treatment of polycarbonate: in situ spectroellipsometry study and polymer characterizations” J. Vac. Sci. Technol. A, vol. 14, pp. 3194-3201 (1996). [125] J. Hyun, M. Pope, J. Smith, M. Park, and J. J. Cuomo, “Ultrathin DLC and SiOx layer deposition on poly(ethylene terephthalate) and restriction of surface dynamics” J. Appl. Polym. Sci, vol. 75, pp. 1158-1164 (2000). [126] M. Benmalek and H. M. Dunlop, “Inorganic coatings on polymers” Surf. Coat. Technol. Vol. 76-77, pp. 821-826 (1995). [127] J. Bierner, M. Jacob, H. Schonherr, “Characterization of step coverage change in ultraviolet-transparent plasma enhanced chemical vapor deposition silicon nitride films” J. Vac. Sci. Technol. A, vol. 18, pp. 2843-2846 (2000). [128] M. Vogt and R. Hauptmann, “Plasma-deposited passivation layers for moisture and water protection” Surf. Coat. Technol., vol. 74-75, pp. 676-681 (1995). [129] M. S. Haque, H. A. Naseem, and W. D. Brown, “Post-deposition processing of low temperature PECVD silicon dioxide films for enhanced stress stability” Thin Solid Films, vol. 308-309, pp. 68-73 (1997). [130] C. A. Harper and A. M. Sampson, in Electronic materials and processes handbook, 2nd edition, McGraw-Hill, New York (1994). [131] B. A. MacDonald, K. Rollins, D. MacKerron, K. Rakos, R. Eveson, K. Hashimoto, and B. Rustin, in Flexible Flat Panel Displays, edited by G. P. Crawford, John Wiley & Sons Ltd, Chichester (2005). [132] W. A. MacDonald, “Engineered films for display technologies” J. Mater. Chem., vol. 14, pp. 4-10 (2004). [133] D. S. Wuu and T. N. Chen, in Handbook of Nanoceramics and their Based Devices, edited by T. Y. Tseng and H. S. Nalwa, American Scientific Publishers, CA (2009). [134] H. Bordet, M. Ignat, and M. Dupeux, “Analysis of the mechanical response of film on substrate systems presenting rough interfaces” Thin Solid Films, vol. 315, pp. 207-213 (1998). [135] U. A. Handge, Y. Leterrier, G. Rochat, I. M. Sokolov, and A. Blumen, “Two scaling domains in multiple cracking phenomena” Phys. Rev. E, vol. 62, pp. 7807-7810 (2000). [136] A. L. Volynskii, S. Bazhenov, O. V. Lebedeva, and N. F. Bakeev, “Mechanical buckling instability of thin coating deposited on soft polymer substrates” J. Mater. Sci., vol. 35, pp. 547-554 (2000). [137] P. C. P. Bouten, P. J. Slikkerveer, and Y. Leterrier, in Flexible Flat Panel Display, edited by G. P. Crawford, John Wiley & Sons Ltd, Chichester (2005). [138] G. Gustaffson, G. M. Treacy, Y. Cao, F. Klavertter, N. Colaneri, and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers” Nature, vol. 357, pp. 477-479 (1992). [139] L. L. Moro, N. M. Rutherford, X. Chu, and R. J. Visser “Multilayer barrier coatings for flexible organic electronics” Solid State Technol., vol. 48, pp. 1-3 (2005). [140] L. L. Moro, T. A. Krajewski, N. M. Rutherford, O. Philips, R. J. Visser, M. E. Gross, W. D. Bennett, and G. Graff, Proceedings of SPIE-The International Society for Optical Engineering on Organic Light-Emitting Materials and Devices VII, p. 83 (2004). [141] L. L. Moro, N. M. Rutherford, X. Chu, R. J. Visser, G. C. Graf, M. E. Gross, and W. Bennet, Proceedings of the International Display Manufacturing Conference and Exhibition, Society for Information Display, p. 342 (2005). [142] A. Hofrichter, P. Bulkin, and B. Drévillon, “Plasma treatment of polycarbonate for improved adhesion” J. Vac. Sci. Technol. A, vol. 20, pp. 245-250 (2002). [143] J. A. Theil, D. V. Tsu, M. W. Watkins, S. S. Kim, and G. Lucovsky, “Local bonding environments of Si-OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor” J. Vac. Sci. Technol. A, vol. 8, pp.1374-1381 (1990). [144] H. A. Naseem, M. S. Haque, and W. D. Brown, The Electrochemical Society Proceedings, vol. 97-10, p. 217 (1997). [145] R. H. Doremus, in Glass Science, John Wiley & Sons, London (1973). [146] S. Robles, E. Yieh, and B. C. Ngoyer, “Moisture resistance of plasma enhanced chemical vapor deposited oxides used for ultralarge scale integrated device applications” J. Electrochem. Soc., vol. 142, pp. 580-585 (1995). [147] A. A. Griffith, "The phenomena of rupture and flow in solids" Philosophical Transactions of the Royal Society of London A, vol. 221, pp. 163-198 (1921). [148] P. Mosaner, M. Bonelli, and Antonio Miotello, “Pulsed laser deposition of diamond-like carbon films: reducing internal stress by thermal annealing” Appl. Surf. Sci., vol. 208-209, pp. 561-565 (2003). [149] Z. Suo and J. W. Hutchinson, “Steady-state cracking in brittle substrates beneath adherent films” Int. J. Solids Structures, vol. 25, pp. 1337-1353 (1989). [150] J. W. Hutchinson and Z. Suo, “Mixed mode cracking in layered materials” Adv. Appl. Mech., vol. 29, pp. 63-191 (1992). [151] M. Yanaka, Y. Tsukahkra, N. Nasako, and N. Takeda, “Cracking phenomena of brittle films in nanostructure composites analysed by a modified shear lag model with residual strain” J. Mater. Sci., vol. 33, pp. 2111-2119 (1998). [152] A. N. R. da Silva, N. I. Morimoto, and O. Bonnaud, “Tetraethylorthosilicate SiO2 films deposited at a low temperature” Microelectron. Reliab., vol. 40, pp. 621-624 (2000). [153] P. M. Martin, G. L. Graff, M. E. Gross, P. E. Burrows, W. D. Bennett, E. Mast, M. J. Hall, C. C. Bonham, M. Zumhoff, and R. Williford, 46th Annual Technical Conference Proceedings, Society Vacuum Coaters, p. 287 (2003). [154] L. Ke, R. S. Kumer, K. Zhang, S. J. Chua, and A. T. S. Wee, “Organic light emitting device performance improvement by inserting a thin parylene layer” Synth. Met., vol. 140, pp. 295-299 (2004). [155] Y. Leterrier, L. Boogh, J. Andersons, and J. A. E. Manson, “Adhesion of silicon oxide layers on poly(ethylene terephthalate).1. Effect of substrate properties on coating's fragmentation process” J. Polymer Sci. B-Polymer Phys., vol. 35, pp. 1449-1461 (1997). [156] T. N. Chen, D. S. Wuu, C. C. Wu, C. C. Chiang, H. B. Lin, Y. P. Chen, and R. H. Horng, “Effects of plasma pretreatment on silicon nitride barrier films on polycarbonate substrates” Thin Solid Films, vol. 514, pp. 188-192 (2006). [157] I. Grimberg, B. Bouaifi, U. Draugelates, K. Soifer, and B. Z. Weiss, “Microstructure and adhesion mechanisms of TiN coatings on metallized acrylonitrile-butadiene-styrene” Surf. Coat. Technol., vol. 68, pp. 166-175 (1994). [158] C. H. Lin, H. L. Wang, and M. H. Hon, “The effect of residual stress on the adhesion of PECVD-coated aluminum oxide film on glass” Thin Solid Films, vol. 283, pp. 171-174 (1996). [159] W.C. Oliver and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments” J. Mater. Res., vol. 7, pp. 1564-1580 (1992). [160] Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. J. Chua, “A mechanical assessment of flexible opto-electronic devices” Thin Solid Films, vol. 394, pp. 202-206 (2001). [161] K. N. Tu, J. W. Mayer, and L. C. Feldman, in Electronic Thin Film Science for Electrical Engineering and Materials Scientists, 1st edition, Macmillan (1996). [162] D. R. Wheeler, H. Osaki, in Metallization of Polymers, edited by E. Sacher, J.-J. Pireaux, and S.P. Kowalczyk, ACS Symposium Series, New York (1990). [163] G. Rochat, Y. Leterrier, P. Fayet, and J. A. E. Månson, “Stress controlled gas-barrier oxide coatings on semi-crystalline polymers” Thin Solid Films, vol. 484, pp. 94-99 (2005) . [164] C. Chaiwong, D. R. McKenzie, and M. M. M. Bilek, “Study of adhesion of TiN grown on a polymer substrate” Surf. Coat. Technol. vol. 201, pp. 6742-6744 (2007). [165] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, and P. Denk, “Effect of LiF/metal electrodes on the performance of plastic solar cells” Appl. Phys. Lett., vol. 80, pp. 1288-1290 (2002). [166] G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthio- phene)” J. Appl. Phys., vol. 98, p. 043704 (2005). [167] M. Reyes-Reyes, K. Kim, and D. L.Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbo
首先,利用氧氣、氮氣及氬氣電漿對軟性基材PC進行表面預處理,經研究後發現,利用高密度氬氣電漿對PC基材預處理60秒後,基板之表面粗糙度由原始之~ 1.71 nm下降至~0.89 nm,因為基板的表面粗糙度會影響沈積在上方薄膜之品質,在經氬氣電漿處理後之基板上,利用電漿輔助化學氣相沈積系統製備單層氮化矽薄膜,其氧氣透過率可由原始之0.61 cm3/m2/day下降至0.1 cm3/m2/day (為MOCON機台所能量測之極限值)。此外,在調變單層氮化矽的製程參數中,薄膜於不同製程溫度下,其特性有顯著之變化,經濕蝕刻法觀察後發現,當沉積溫度由80°C提升至240°C,薄膜內部之缺陷間距推估由125 μm上升至450 μm。然而,單層膜並無法達到有機發光二極體顯示器的嚴苛要求,即水氣透過率< 10-6 g/m2/day與氧氣透過率< 10-3 cm3/m2/day。於是,氮化矽/聚-對二甲苯、氮化矽/氧化矽/聚-對二甲苯與氮化矽/氧化矽多層結構被用來進一步降低水氧氣透過率。其中,將氮化矽薄膜之沉積溫度由80°C提高至200°C,四對氮化矽/聚-對二甲苯多層膜結構之水氣透過率可由7.9×10-4 g/m2/day降至7.41×10-6 g/m2/day。於80°C之低溫製程下,研究發現有機層之厚度與無機膜之薄膜內應力是影響多層膜特性之決定性因素。藉由鈣測試法得知,在25°C,相對溼度40%之測試條件下,重複堆疊多對之氮化矽/氧化矽/聚-對二甲苯多層鍍膜於PC基材上,可將PC之水氣透過率由原始之20 g/m2/day降至2.5×10-7 g/m2/day,經5000次撓曲後,水氣透過率約為4.3×10-6 g/m2/day。為了簡化製程,本文亦探討氮化矽/氧化矽多層膜之特性,經調變多層膜之薄膜內應力,鍍製六對之氮化矽/氧化矽於PC上,可將水氣透過率降至3.1×10-6 g/m2/day,經5000次撓曲後,略微上升至3.5×10-5 g/m2/day,平均可見光穿透率~87%。
最後,本研究將六對之氮化矽/氧化矽多層膜結構實際應用於高分子太陽能元件之封裝。其中,主動層使用聚(3-己烷噻吩)[poly(3-hexylthiophene); P3HT]與碳六十之衍生物([6,6]-phenyl C61-butyric acid methyl ester; PCBM),以塊材異質接面結構(Bulk Heterojunction)製作。探討溶液濃度、溶質比與溶劑退火條件,對主動層之影響,以獲得穩定且最佳化之高分子太陽能元件。另外,特別針對阻障層鍍製過程中,可能產生之影響進行討論。比較最佳化元件在有無阻氣層封裝之情況下,經室外測試,無阻氣層封裝之元件壽命約為50小時,有阻氣層封裝之元件在經過1500小時後,仍具有原始效率50%之光電轉換效率。

Flexible organic light emitting displays (OLEDs) and polymer solar cells (PSCs) are expected to become next-generation electronic devices. These devices require high-performance substrates with a low permeability, high optical transparency, optimum film stress, low surface roughness, good mechanical behavior, and long-term chemical, thermal and environmental stability. Among these requirements, moisture and oxygen permeation could degrade and reduce the performance and durability of electronic devices. In order to achieve OLEDs' lifetime of tens of thousands of hours, the water vapor transmission rate (WVTR) must be <10-6 g/m2/day and the oxygen transmission rate (OTR) must be <10-3 cm3/m2/day. These extreme low transmission rates are several orders of magnitude smaller than those of any polymer substrates, and they can also be several orders of magnitude smaller than what can be measured using commercial equipment (MOCON) designed for this purpose. For these reasons, this dissertation has focused on developing transparent barrier materials on polymer substrates with ultra-low permeabilities and the calcium degradation test for measuring the low permeation. To improve the surface state of polymer substrates, Ar, N2, and O2 plasma-treated polycarbonate (PC) substrates have been investigated. The roughness of Ar plasma-treated PC substrates was decreased from 1.71 to 0.89 nm and, thus, the OTR of silicon nitride (SiNx) coatings on PC decreased from 0.61 to 0.1 cm3/m2/day. For a single barrier film, the growth temperature was found to have significant effects on film's properties. A wet etching process was performed to visualize the defect distribution in the barrier film. After 120 min of etching, the average defect spacing increased from 125 to 450 μm with increasing growth temperature from 80 and 240°C. However, the single barrier film deposited by plasma-enhanced chemical vapor deposition was not sufficient for the strict requirement and multilayer barrier structures were proposed for further reducing the permeability.
Multilayer structures composed of SiNx and parylene thin films were deposited onto flexible Industry Technology Research Institute polyimide with high glass transition temperature. Under room temperature and RH 50%, four SiNx/parylene stacks with the SiNx films deposited at 80 and 200°C were demonstrate to decrease the water vapor transmission rate to 7.9×10-4 and 7.41×10-6 g/m2/day, respectively. As a result, ultra-low permeation can be achieved with less repeating barrier stacks by using high temperature deposited SiNx films in the barrier structures. SiOx films were added into the barrier structures for improving the performance of low temperature deposited barrier structures. OLEDs capped with two SiNx/SiOx/parylene(NOP) stacks deposited at 80°C showed no dark spots and exhibited better emissions than single NOP layers after 100 h under 25°C, 40% RH. However, a lateral leakage was observed in the parylene layer and resulted in increasing permeation and poor adhesion between organic and inorganic layers. By encapsulating the parylene layer, the WVTR can reach 2.5×10-7 g/m2/day as calculated by a calcium test. After being flexed for 5000 times, the WVTR value can keep ~4.3×10-6 g/m2/day. To simplify the growth process, transparent barrier structures consisting of SiNx/SiOx stacks was studied. The internal stress of barrier films was adjusted to prevent the stress-induced cracks during the multilayer deposition process. The WVTR value of the optimum barrier structure can reduce to 3.12×10-6 g/m2/day calculated by a calcium test (100 days at 25°C, 40% relative humidity). After bending for 5000 times in a compressive mode, the WVTR value can keep below 3.54×10-5 g/m2/day. Therefore, this barrier structure was applied for the encapsulation of bulk heterojunction PSCs. After barrier encapsulation, the outside testing experiment shows that the halflife of the devices can be prolonged from ~50 to ~1500 h.
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.