Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10667
標題: 以植入法合成氧化鐵中空微球與藥物包覆之研究
Synthesis of iron oxide hollow microspheres by implantation of precursor and application in drug encapsulation
作者: 吳信霖
Wu, Hsin-Lin
關鍵字: iron oxide;有機微球;organic microsphere;core-shell structure;drug- encapsulation;核殼結構;藥物載體
出版社: 材料科學與工程學系所
引用: 1. S. W. Cao, Y. J. Zhu, M. Y. Ma, L. Li, L. Zhang, “Hierarchically Nanostructured Magnetic Hollow Spheres of Fe3O4 and γ-Fe2O3 : Preparation and Potential Application in Drug Delivery,” J. Phys. Chem. C, 112, 1851-1856, 2008 2. S. W. Cao, Y. J. Zhu, “Hierarchically Nanostructured γ-Fe2O3 Hollow Spheres: Preparation, Growth Mechanism, Photocatalytic Property, and Application in Water Treatment,” J. Phys. Chem. C, 112, 6253-6257, 2008 3. C. Hu, Z. Gao, X. Yang, “Hematite Hollow Spheres with Excellent Catalytic Performance for Removal of Carbon Monoxide,” Chem. Lett., 35, 1288-1289, 2006 4. Z. Wu, K. Yu, S. Zhang, Y. Xie, “Hematite Hollow Spheres with a Mesoporous Shell: Controlled Synthesis and Applications in Gas Sensor and Lithium Ion Batteries,” J. Phys. Chem. C, 112, 11307-11313, 2008 5. X. W. Lou, L. A. Archer, Z. Yang, “Hollow Micro-/Nanostructures: Synthesis and Applications,” Adv. Mater., 20, 3987- 4019, 2008 6. F. Caruso, R. A. Caruso, H. Mohwald, “Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating,” Science, 282, 1111-1114, 1998 7. D. Wang, F. Caruso, “Polyelectrolyte-Coated Colloid Spheres as Templates for Sol-Gel Reactions,” Chem. Mater., 14, 1909-1913, 2002 8. A. Imhof, “Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells,” Langmuir, 17, 3579-3585, 2001 9. D. Wang, C. Song, Z. Hu, X. Fu, “Fabrication of Hollow Spheres and Thin Films of Nickel Hydroxide and Nickel Oxide with Hierarchical Structures,” J. Phys. Chem. B, 109, 1125-1129, 2005 10. S. W. Kim, M. Kim, W. Y. Lee, T. Hyeon, “ Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions,” J. Am. Chem. Soc., 124, 7642-7643, 2002 11. M. Yang, J. Ma, C. Zhang, Z. Yang, Y. Lu, “ General Synthetic Route toward Functional Hollow Spheres with Double-Shelled Structures,” Angew. Chem. Int. Ed., 44, 6727-6730, 2005 12. S. B. Yoon, K. Sohn, J. Y. Kim, C. H. Shin, J. S. Yu, T. Hyeon, “Fabrication of Carbon Capsules with Hollow Macroporous Core/Mesoporous Shell Struc,” Adv. Mater., 14, 19-21, 2002 13. S. Ikeda, K. Tachi, Y. H. Ng, Y. Ikoma, T. Sakata, H. Mori, T. Harada, M. Matsumura, “Selective Adsorption of Glucose-Derived Carbon Precursor on Amino-Functionalized Porous Silica for Fabrication of Hollow Carbon Spheres with Porous Walls,” Chem. Mater., 19, 4335- 4340, 2007 14. M. Fujiwara, K. Shiokawa, Y. Tanaka, Y. Nakahara, “Preparation and Formation Mechanism of Silica Microcapsules (Hollow Sphere) by Water/Oil/Water Interfacial Reaction,” Chem. Mater., 16, 5420-5426, 2004 15. J. Du, Y. Chen, Y. Zhang, C. C. Han, K. Fischer, M. Schmidt, “Organic/Inorganic Hybrid Vesicles Based on A Reactive Block Copolymer,” J. Am. Chem. Soc., 125, 14710-14711, 2003 16. H. Xu, W. Wang, “Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall,” Angew. Chem. Int. Ed., 46, 1489-1492, 2007 17. Q. Peng, Y. Dong, Y. Li, “ZnSe Semiconductor Hollow Microspheres,” Angew. Chem. Int. Ed., 42, 3027-3030, 2003 18. D. G. Shchukin, K. Kohler, H. Mohwald, G. B. Sukhorukov, “Gas-Filled Polyelectrolyte Capsules,” Angew. Chem. Int. Ed., 44, 3310-3314, 2005 19. X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee, L. A. Archer, “Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity,” Adv. Mater., 18, 2325-2329, 2006 20. L. Zhou, W. Wang, H. Xu, S. Sun, “Template-Free Fabrication of CdMoO4 Hollow Spheres and Their Morphology-Dependent Photocatalytic Property,” Cryst. Growth Des., 8, 3595-3601, 2008 21. Y. Wang, L. Cai, Y. Xia, “Monodisperse Spherical Colloids of Pb and Their Use as Chemical Templates to Produce Hollow Particles,” Adv. Mater., 17, 473-477, 2005 22. Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, “Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect,” Science, 304, 711-714, 2004 23. S. Sadasivan, G. B. Sukhorukov, “Fabrication of hollow multifunctional spheres containing MCM-41 nanoparticles and magnetite nanoparticles using layer-by-layer method,” J. Colloid Interface Sci., 304, 437- 441, 2006 24. Z. Dai, F. Meiser, H. Möhwald, “Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol-gel process,” J. Colloid Interface Sci., 288, 298-300, 2005 25. H. Qian, G. Lin, Y. Zhang, P. Gunawan, R. Xu, “A new approach to synthesize uniform metal oxide hollow nanospheres via controlled precipitation,” Nanotechnology, 18, 355602, 2007 26. Q. Ye, Y. Kozuka, H. Yoshikawa, K. Awaga, S. Bandow, S. Iijima, “Effects of the unique shape of submicron magnetite hollow spheres on magnetic properties and domain states,” Phys. Rev. B, 75, 224404, 2007 27. J. H. Bang, K. S. Suslick, “Sonochemical Synthesis of Nanosized Hollow Hematite,” J. Am. Chem. Soc., 129, 2242-2243, 2007 28. H. Shiho1, N. Kawahashi, “Iron Compounds as Coatings on Polystyrene Latex and as Hollow Spheres,” J. Colloid Interface Sci., 226, 91-97, 2000 29. C. Tapeinos, I. Kartsonakis, P. Liatsi, I. Daniilidis, G. Kordas, “Synthesis and Characterization of Magnetic Nanocontainers,” J. Am. Ceram. Soc., 91, 1052-1056, 2008 30. M. Ohnishi, Y. Kozuka, Q. L. Ye, H. Yoshikawa, K. Awaga, R. Matsuno, M. Kobayashi, A. Takahara, T. Yokoyama, S. Bandow, S. Iijima, “Phase selective preparations and surface modifications of spherical hollow Nanomagnets,” J. Mater. Chem., 16, 3215-3220, 2006 31. D. G. Shchukin, R. A. Caruso, “Template Synthesis and Photocatalytic Properties of Porous Metal Oxide Spheres Formed by Nanoparticle Infiltration,” Chem. Mater., 16, 2287-2292, 2004 32. Z. Huang, F. Tang, “Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres,” J. Colloid Interface Sci., 281, 432- 436, 2005 33. Z. Huang, F. Tang, “Hematite nanoparticles as polystyrene microsphere coatings and hollow spheres: preparation and characterization,” Colloid Polym Sci, 282 1198-1205, 2004 34. S. YANG, H. LIU, Z. ZHANG, “ A Facile Route to Hollow Superparamagnetic Magnetite/Polystyrene Nanocomposite Microspheres Via Inverse Miniemulsion Polymerization,” J. Polym. Sci., Part A: Polym. Chem., 46, 3900-3910, 2008 35. H. Y. Koo, S. T. Chang, W. S. Choi, J. H. Park, D. Y. Kim, O. D. Velev, “Emulsion-Based Synthesis of Reversibly Swellable, Magnetic Nanoparticle-Embedded Polymer Microcapsules,” Chem. Mater., 18, 3308-3313, 2006 36. S. Yang, H. Liu, “A novel approach to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via interfacial polymerization,” J. Mater. Chem., 16, 4480- 4487, 2006 37. X. Chen, Z. Zhang, X. Li, C. Shi, “Hollow magnetite spheres: Synthesis, characterization, and magnetic properties,” Chem. Phys. Lett., 422, 294-298, 2006 38. L. P. Zhu, H. M. Xiao, W. D. Zhang, G. Yang, S. Y. Fu,“One-Pot Template-Free Synthesis of Monodisperse and Single-Crystal Magnetite Hollow Spheres by a Simple Solvothermal Route,” Cryst. Growth Des., 8, 957-963, 2008 39. S. Lian, E. Wang, L. Gao, D. Wu, Y. Song, L. Xu, “Surfactant-assisted solvothermal preparation of submicrometersized hollow hematite particles and their photocatalytic activity,” Mater. Res. Bull., 41, 1192-1198, 2006 40. B. Maoa, Z. Kanga, E. Wanga, C. Tiana, Z. Zhanga, C. Wanga, Y. Songa, M. Lib, “Template free fabrication of hollow hematite spheres via a one-pot polyoxometalate-assisted hydrolysis process,” J. Solid State Chem., 180, 489- 495, 2007 41. S. Zeng, K. Tang, T. Li, Z. Liang, D. Wang, Y. Wang, W. Zhou, “Hematite Hollow Spindles and Microspheres: Selective Synthesis, Growth Mechanisms, and Application in Lithium Ion Battery and Water Treatment,” J. Phys. Chem. C, 111, 10217-10225, 2007 42. L. Li, Y. Chu, Y. Liu, L. Dong, “Template-Free Synthesis and Photocatalytic Properties of Novel Fe2O3 Hollow Spheres,” J. Phys. Chem. C, 111, 2123-2127, 2007 43. L. Wang, J. Bao, L. Wang, F. Zhang, Y. Li, “ One-Pot Synthesis and Bioapplication of Amine-Functionalized Magnetite Nanoparticles and Hollow Nanospheres,” Chem. Eur. J., 12, 6341-6347, 2006 44. P. Tartaj, T. G. Carreno, C. J. Serna, “From Hollow to Dense Spheres: Control of Dipolar Interactions by Tailoring the Architecture in Colloidal Aggregates of Superparamagnetic Iron Oxide Nanocrystals,” Adv. Mater., 16, 529-533, 2004 45. B. Jia, L. Gao, “Morphological Transformation of Fe3O4 Spherical Aggregates from Solid to Hollow and Their Self-Assembly under an External Magnetic Field,” J. Phys. Chem. C, 112, 666-671, 2008 46. S. Peng, S. Sun, “Synthesis and Characterization of Monodisperse Hollow Fe3O4 Nanoparticles,” Angew. Chem. Int. Ed., 46, 4155- 4158, 2007 47. J. S. Reed, “Principles of Ceramics Processing,” Second Ed., 1994 48. B. J. Reddy, K. B. N. Sarma, “Optical Absorption Spectrum of Fe3+ In Orthoclase Feldspar,” Proc. Indian natn. Sci. Acad., 46, 176-180, 1980 49. J. Zhang, S. Rana, R. S. Srivastava, R. D. K. Misra, “On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles,” Acta Biomaterialia, 4, 40-48, 2008 50. G. Gnanaprakash, S. Ayyappan, T. Jayakumar, J. Philip, B. Raj, “Magnetic nanoparticles with enhanced γ -Fe2O3 to α-Fe2O3 phase transition temperature,” Nanotechnology, 17, 5851-5857, 2006 51. D. L. A. de Faria, S. V. Silva, M. T. de Oliveira, “Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides,” J. Raman Spectrosc., 28, 873-878, 1997 52. W. Wang, J. Y. Howe, B. Gu, “Structure and Morphology Evolution of Hematite (α-Fe2O3) Nanoparticles in Forced Hydrolysis of Ferric Chloride,” J. Phys. Chem. C, 112, 9203-9208, 2008 53. T. P. Raming, A. J. A. Winnubst, C. M. V. Kats, A. P. Philipse, “The Synthesis and Magnetic Properties of Nanosized Hematite (α-Fe2O3) Particles,” J. Colloid Interface Sci., 249, 346-350, 2002 54. V. Kumar, A. Rana, M. S. Yadav, R. P. Pant, “Size-induced effect on nano-crystalline CoFe2O4,” J. Magn. Magn. Mater., 320, 1729-1734 , 2008 55. A. D. Pelton, C.W. Bale, “Thermodynamics,” Second Ed., 1999.
摘要: 
本研究以四氯乙烯為反應溶劑、氯化鐵為合成氧化鐵之前驅物、有機微球為硬質模板,藉由植入之方式使前驅物氯化鐵存在於有機微球模板,形成一核殼結構微球,反應時間可有效縮短,經由高溫鍛燒移除有機模板,可得α-Fe2O3中空球。由化學分析電子儀(ESCA)縱深分析結果證實,含鐵前驅物是以植入方式存在於有機微球。此外,本研究嘗試改變氯化鐵濃度、反應溫度與鍛燒溫度,將獲得之中空球粉體分別利用傅立葉轉換紅外線光譜儀(FTIR)、X光繞射分析儀(XRD)、拉曼分析儀(Raman)、場發射掃描式電子顯微鏡(FE-SEM)、穿透式電子顯微鏡(TEM)、動態光散射粒徑分析儀(DLS)、比表面積分析儀(BET)與超導量子干涉儀(SQUID)分析表面微結構、比表面積和磁性質,並測試α-Fe2O3中空球於藥物載體應用方面之可行性。
XRD分析發現鍛燒溫度由室溫提升至400oC時,開始生成α-Fe2O3相,且鍛燒溫度提高至800 oC時,仍然為α-Fe2O3相,伴隨發生晶粒成長現象。另外,SEM與DLS結果顯示提高氯化鐵濃度及反應溫度皆會使中空球的外徑增加;TEM證實反應溫度提高,殼層厚度有增厚的趨勢。由BET結果得知氯化鐵濃度及反應溫度增加,比表面積皆有降低的現象。α-Fe2O3中空球磁性表現方面,由SQUID量測顯示飽和磁化強度、剩餘磁化強度及矯頑磁場,大致上皆隨著晶粒尺寸增加而呈現下降的趨勢。藥物載體應用方面,UV-Vis結果證實消炎藥分子吸附於α-Fe2O3中空球的效果相較對照組的商用實心α-Fe2O3粒子來得優異。
最後本研究藉由改變鍛燒的氣氛,以氬氣替代原本的空氣氣氛會導致Fe3O4相的生成。

This research uses tetrachloroethylene as a reactive solvent, iron chloride as a precursor for iron oxide, and organic microspheres as a hard template in a way that the iron chloride is implanted into surface of the organic template to form a core-shell structure. Iron oxide particles with hollow interiors are then formed by thermal pyrolysis of the organic core. From depth profile of ESCA analyses, the precursor ions are penetrated into the surface of organic cores. Concentration of the iron chloride, reaction temperature, and calcination temperature have been varied to examine their effect on surface microstructure, specific surface area, and magnetic property of the hollow iron oxide spheres by FTIR, XRD, Raman, FE-SEM, TEM, DLS, BET and SQUID, respectively. In addition, hollow iron oxide spheres as a drug carrier have also been evaluated.
XRD results show that α-Fe2O3 is formed when temperature is raised above 400oC. Grain growth becomes apparent when temperature was raised to 800 oC. SEM and DLS analyses reveal that the particle size of the hollow particles increases with the increasing concentration of the iron chloride and the reaction temperature as well. TEM analyses indicate that the shell thickness is increased with the reaction temperature. From BET analysis, the specific surface area is decreased with increasing iron-chloride concentration and reaction temperature. Magnetic measurement of SQUID reveals that saturation magnetization, remnant magnetization and coercive field are all decreased when crystalline size is increased. For the drug-encapsulation property, UV-Vis analyses demonstrate that the adsorption of ibuprofen molecules within the hollow α-Fe2O3 spheres is better than that of commercial α-Fe2O3 particles.
Finally, Fe3O4 hollow particles have also been prepared by the same synthesis scheme simply by replacing the calcinations atmosphere from ambient air to argon atmosphere.
URI: http://hdl.handle.net/11455/10667
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.