Please use this identifier to cite or link to this item:
標題: 以植入法合成單一分散中空Al2O3暨Pt-Al2O3微球之研究
Synthesis of Monodispersed Al2O3 and Pt-Al2O3 Hollow Microspheres by Implantation of Precursor
作者: 李維特
Li, Wei-Te
關鍵字: Pt;Pt;Al2O3;organic microsphere;core-shell structure;Al2O3;有機微球;核殼結構
出版社: 材料科學與工程學系所
引用: 1. C. Hu, Z. Gao, and X. Yang, “Hematite Hollow Spheres with Excellent Catalytic Performance for Removal of Carbon Monoxide,” Chem. Lett., 35, 1288-1289, 2006. 2. N. K. Mal, M. Fuji., and Y. Tanaka, “Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica,” Nature, 421, 350-353, 2003. 3. Q. Q. Qiu, P. Duch., and P. S. Ayya., “Fabrication, Characterization and Evaluation of Bioceramic Hollow Microspheres Used as Microcarriers for 3-D Bone Tissue Formation in Rotating Bioreactors,”Biomaterials, 20, 989-1001, 1999. 4. K. Kamata, Y. Xia.,“Synthesis and Characterization of Monodispersed Core-Shell Spherical Colloids with Movable Cores,” J. Am. Chem. Soc., 125, 2384-2385, 2003 5. F. Caruso, A. S. Susha, M. Giersig, H. Möhwald, “Magnetic core-shell particles: preparation of magnetite multilayers on polymer latex microspheres,”Adv. Mater., 11, 950-953,1999. 6. F. Caruso, M. Spasova, A. Susha, M. Giersig, R. A. Caruso, “Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approachh”Chem. Mater., 13, 109-116,2001. 7. Y. W. Wang and W. J. Tseng,“A Novel Technique for Synthesizing Nanoshell Hollow AluminaParticles,”J. Am. Ceram. Soc., 92, S32-S37,2009. 8. C. Meeph., C. Chais., P. Sampa.,P. Prase,“Effect of phase composition between nano γ- and χ-Al2O3 on Pt/Al2O3 catalyst in CO oxidation,” Catal. Commun., 9, 546-550, 2008 9. S. Erik., U. Nylén, S. Rojas, M.Bout.,“Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis,” Appl. Catal., A, 265, 207-219,2004 10. Z. Yang, Z. Niu, Y. Lu, Z. Hu, C. C. Han, “Templated Synthesis of Inorganic Hollow Sphereswith a Tunable Cavity Size onto Core–Shell Gel Particles”Angew. Chem. Int. Ed., 42, 1943-1945, 2003. 11. Z. Niu, Z. Yang, Y. Lu, C. C. Han, “Polyaniline -silica composite conductive capsules and hollow spheres,”Adv. Funct. Mater., 13, 949-954, 2003. 12. F. Caruso, R. A. Caruso, H. Möhwald, “Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating,”Science, 282, 1111-1114, 1998. 13. F. Caruso, R. A. Caruso, H Möhwald, “Production of Hollow Microspheres from Nanostructured Composite Particles,”Chem. Mater., 11, 3309-3314, 1999 14. R. A. Caruso, A. Susha, F. Caruso, Chem. Mater.,“Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres,” 13, 400-409, 2001. 15. A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmüller, H. Weller, “Nano- and Microengineering: Three-Dimensional Colloidal Photonic Crystals Prepared from Submicrometer-Sized Polystyrene Latex Spheres Pre-coated with Luminescent Polyelectrolyte/Nanocrystal Shells,” Adv. Mater., 12, 333-337, 2000. 16. S. Eiden, G. Maret, “Preparation and Characterization of Hollow Spheres of Rutile,” J. Colloid Interface Sci., 250, 281-284, 2002. 17. D. Wang, C. Song, Z. Hu, X. Fu, “Fabrication of Hollow Spheres and Thin Films of Nickel Hydroxide and Nickel Oxide with Hierarchical Structures,” J. Phys. Chem. B, 109, 1125-1129, 2005. 18. S. W. Kim, M. Kim, W. Y. Lee, T. Hyeon, “Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions,” J. Am. Chem. Soc., 124, 7642-7643, 2002. 19. S. Ikeda, K. Tachi, Y. H. Ng, Y. Ikoma, T. Sakata, H. Mori, T. Harada, M. Matsumura, “Selective Adsorption of Glucose-Derived Carbon Precursor on Amino-Functionalized Silica Surface for Fabrication of Hollow Carbon Spheres with Porous Walls,” Chem. Mater., 19, 4335-4340, 2007. 20. F. J. Suarez, M. Sevilla, S. Alvarez, T. Valdes-Solis, A. B. Fuertes, “Synthesis of Highly Uniform Mesoporous Sub-Micrometric Capsules of Silicon Oxycarbide and Silica,” Chem. Mater., 19, 3096-3098, 2007. 21. M. Fujiwara, K. Shiokawa, Y. Tanaka, Y. Nakahara, “Preparation and Formation Mechanism of Silica Microcapsules (Hollow Sphere) by Water/Oil/Water Interfacial Reaction,” Chem. Mater., 16, 5420-5426, 2004. 22. J. Du, Y. Chen, Y. Zhang, C. C. Han, K. Fischer, M. Schmidt, “OrganicInorganic Hybrid Vesicles Based on A Reactive Block Copolymer” J. Am. Chem. Soc., 125, 14710-14711, 2003. 23. Q. Peng, Y. Dong, Y. Li, “ZnSe Semiconductor Hollow Microspheres,” Angew. Chem. Int. Ed., 42, 3027-3030, 2003. 24. H. G. Yang, H. C. Zeng, “Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening,” J. Phys. Chem. B, 108, 3492 -3495,2004. 25. Y. Wang, L. Cai, Y. Xia, “Monodispersed Spherical Colloids of Pb and Their Use as Chemical Templates to Produce Hollow Particles,” Adv. Mater., 17, 473-477, 2005. 26. R. H. A. Ras,*M. Kemell, J. d. Wit, M. Ritala, G. t. Brinke, M. Leskelä, O. Ikka., “Hollow Inorganic Nanospheres and Nanotubes with Tunable Wall Thicknesses by Atomic Layer Deposition on Self-Assembled Polymeric Templates,” Adv. Mater., 19, 102-106, 2007. 27. Y. Xia, R. Mokaya, “Hollow spheres of crystalline porous metal oxides: A generalized synthesis route via nanocasting with mesoporous carbon hollow shells,” J. Mater. Chem., 15, 3126-3131, 2005. 28. L. P. Pang, R. H. Zhao, F. Guo, J. F. chen, W. G. Cui, “Preparation and Characterization of Novel Alumina Hollow Spheres,” Acta Phys. Chim. Sin., 24, 1115-1119, 2008. 29. X. Wu , D. Wang , Z. Hu, G. Gu, “Synthesis of γ-AlOOH (γ-Al2O3) self-encapsulated and hollow architectures,” Mater. Chem. Phys., 109, 560-564, 2008. 30. Daniel H. M. Buchold, C. Feldmann, “Nanoscale γ-AlO(OH) Hollow Spheres: Synthesis and Container-Type Functionality,” Nano Lett., 7, 3489-3492, 2007. 31. T. Kato,. H. Ushijima, M. Katsumata, T. Hyodo, Y. Shirnizu, “Effect of Core Materials on the Formation of Hollow Alumina Microspheres by Mechanofusion Process,” J. Am. Ceram. Soc., 87, 60-67, 2004. 32. H. Kou, J. Wang, Y. Pan, J. Guo, “Hollow Al2O3 Microspheres Derived from Al/AlOOH‧nH2O Core-Shell Particles,” J. Am. Ceram. Soc., 88, 1615–1618, 2005. 33. W. Yang, F. Gao, H. Wang, X. Cheng, Z. Xie, F. Xing, L. An, “Hollow Alumina Microsphere Chain Networks,” J. Am. Ceram. Soc., 92, 280–282, 2009. 34. Y. Li, J. Shi, Z. Hua, H. Chen, M. Ruan, D. Yan, “Hollow Spheres of Mesoporous Aluminosilicate with a Three-Dimensional Pore Network and Extraordinarily High Hydrothermal Stability,” Nano Lett., 3, 609-612, 2003. 35. Y. Jiang, X. Ding, J. Zhao, H. Bala, X. Zhao, Y. Tian, K. Yu, Y. Sheng,Y. Guo, Z. Wang, “A facile route to synthesis of hollow SiO2/Al2O3 spheres with uniform mesopores in the shell wall,” Mater. Lett., 59, 2893-2897, 2005. 36. L. Zhang, W. Lu, L. Yan, Y. Feng, X. Bao, J. Ni, X. Shang, Y. Lv., “Hydrothermal synthesis and characterization of core/shell ALOOH microspheres,” Microporous Mesoporous Mater., 119, 208-216, 2009. 37. J. Shen, Z. Huang, J. Li, L. Gao, H. Zhou, Y. Qian, “Thin graphite skin on glass-like carbon fiber prepared at high temperature from cellulose fiber,” Carbon,43, 2817-2833, 2005. 38. J. Li, Y. Pan, C. Xiang, Q. Ge, J. Guo, “Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol-gel process” Ceram. Int. 32, 587-591, 2006. 39. J . Kákos ,L.Baca,P. Veis , L. Pach, “Photoluminescence Spectra and Crystallization of θ-Al2O3 and α-Al2O3 from AlOOH-Fe(NO3)3 Gels,”J. Sol-Gel Sci. Techn. 21, 167-172, 2001. 40. A. Morrtensen , D.H. Christensen , O. F. Nielsen, “Raman spectra of amorphous Al2O3 and Al2O3/MoO3 obtained by visible and infrared excitation,”J . Raman. Spectrosc., 22, 47-49,1991. 41. A. Aminzadeh, “Excitation Frequency Dependence and Fluorescence in the Raman Spectra of Al2O3,” Appl. Spectrosc., 51, 817-819, 1997. 42. M. F. Luo, P. Fang, M. He, Y. L. Xie, “Fluorescence spectroscopic study of the phase transformationof γ-Al2O3 at high temperatures,” phys. stat. sol., 203, 2065-2072, 2006. 43. 王彥文,以植入前驅物於膠體模板方式合成單一分散中空氧化鋁暨其他無機物微球之研究,中興大學材料科學與工程研究所碩士論文,中華民國九十七年七月 44. 鄭功傑,氧化鋁微粉之基礎晶徑觀察 ,成功大學資源工程學系碩士論文,中華民國88年 45. F. W. Dynys and J. W. Halloran, in Ultrastructure Processing of Ceramics, Glasses and Composites,edited by L.L. Hench and D.R. Ulrich, John Wiely, New York, 1984, Chap.11, pp. 142-151. 46. H. Wang, S. Y. Zheng, X. D. Li, D. P. Kim, “Preparation of three-dimensional ordered macroporous SiCN ceramic using sacrificing template method,” Microporous Mesoporous Mat. 80, 357-362, 2005. 47. J. Singh, E. M. C. Alayon, M. Tromp, O. V. Safonova, P. Glatzel, M. Nachtegaal, R. Frahm, J. A. van Bokhoven, “Generating Highly Active Partially Oxidized Platinum during Oxidation of Carbon Monoxide over Pt/Al2O3 : In Situ, Time-Resolved,and High-Energy-Resolution X-Ray Absorption Spectroscopy” Angew. Chem. Int. Ed., 47, 9260-9264, 2008.
由TEM及ICP結果顯示,經過1100℃煅燒後,製程I及製程II兩種製程皆可得到Pt-Al2O3複合微球,由製程I Pt/α-Al2O3發現,Pt負載量較低,Pt粒子粒徑小(約5nm)且較均勻,製程II Pt/α-Al2O3雖然Pt負載量較高,但Pt粒子粒徑較大(約40~180nm)且不均勻。由Raman結果顯示,經1000℃煅燒後,製程I Pt-Al2O3 即有Al2O3的α與θ相形成,並於1100℃煅燒後,結晶相完全轉變為α相,但製程II Pt-Al2O3在1000℃煅燒後只有θ相,於1100℃煅燒後,才形成α與θ相,要完全形成α相則需要1200℃。XRD結果顯示製程I與製程II Pt-Al2O3只發現會有α-Al2O3結晶相,但製程II Pt-Al2O3須在1100℃煅燒後方形成α相,而製程II Pt-Al2O3須在1200℃煅燒後形成α相,和XRD結果吻合。

This research uses C2Cl4 as a reactive solvent, AlCl3 as a precursor for Al2O3, and organic microspheres as a template in a way that the AlCl3 is implanted into surface of organic cores to form a core-shell structure. Al2O3 microspheres with hollow interiors are formed after thermal pyrolysis to remove the organic core. In addition, this research also uses C2Cl4 as a reactive solvent, AlCl3 and H2PtCl6.nH2O as precursors for synthesis of Pt-Al2O3 composite hollow particles. Two processes (processes I and II) have been used for the synthesis, and Pt-Al2O3 hollow microspheres are formed after thermal pyrolysis which removes the organic core. From the depth profile of ESCA analysis, the precursors used in the process are located beneath the surface of organic cores by an implantation of Al or Pt ions. The reaction temperature, calcination temperature and calcination time have been changed to examine the microstructure, phase transformation, and specific surface area of the hollow microspheres by TEM, FESEM, XRD, Raman and BET. The loading amount of Pt element is analyzed by ICP.
From TEM analysis, the shell thickness of the Al2O3 hollow microspheres increases with the increasing reaction temperature. When the reaction temperature is held at 75oC, pores on the shell appear to decrease with the increasing calcination time, presumably caused by grain growth of α-Al2O3.
From TEM and ICP results, at 1100oC, Pt loading is lower in the Process I Pt/α-Al2O3 and Pt particle size is smaller and disperses more uniform in alumina matrix. The Pt particle size is about 5nm. On the other hand, the Pt loading is higher for the Process II Pt/α-Al2O3, but the Pt particle size is larger (about 40~180nm). From Raman analyses, at 1000oC, αphase and θ phase Al2O3 are formed in the Process I Pt-Al2O3 and at 1100oC, the crystalline phase is completely transformed intoαphase. But after calcination at 1000oC, onlyαphase is formed in the Process II Pt-Al2O3. At 1100oC, the θphase is formed and theαphase is completely formed at 1200oC. From XRD results, only α-Al2O3 phase is found, but for the Process I Pt-Al2O3, the complete formation of α-Al2O3 phase occurs at 1100oC. On the other hand,αphase is formed at 1200oC for the Process II.

Key word: Pt, Al2O3, organic microsphere, core-shell structure
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.