Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10674
DC FieldValueLanguage
dc.contributor吳榮宗zh_TW
dc.contributor戴憲弘zh_TW
dc.contributor蔡敬誠zh_TW
dc.contributorJung-Chung Wu 吳榮宗zh_TW
dc.contributorShenghong A. Dai 戴憲弘zh_TW
dc.contributorJing-Cherng Tsai 蔡敬誠zh_TW
dc.contributor.advisor薛富盛zh_TW
dc.contributor.advisorFuh-Sheng Shieu 薛富盛zh_TW
dc.contributor.author黃銘郁zh_TW
dc.contributor.author黃銘郁, Ming-Yu Huangzh_TW
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T06:45:46Z-
dc.date.available2014-06-06T06:45:46Z-
dc.identifier.citation1. P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, 2nd ed., Wiley-VCH, Weinheim (2008). 2. J.S. Wikes, J. Mol. Catal. A: Chem. 214 (2004) 11. 3. T.L. Greaves, C.J. Drummond, Chem. Rev. 108 (2008) 206. 4. A. Stark, K.R. Seddon, Kirk-Other Encyclopedia of Chemical Technology 26 (2007) 836. 5. A. Berthod, M.J. Ruiz-Angei, S. Carda-Broch, J. Chromatogr. A 1184(1-2) (2008) 6. 6. Z. Li, J. Chang, H. Shan, J. Pan, Rev. Anal. Chem. 26(2) (2007) 109. 7. Z. Qiu, J. Texter, Curr. Opin. Colloid Interface Sci. 13(4) (2008) 252. 8. J.M. Gutierrez, C. Gonzalez, A. Maestro, I. Sole, C.M. Pey, J. Nolla, Curr. Opin. Colloid Interface Sci. 13(4) (2008) 245. 9. P. Hapiot, C. Lagrost, Chem. Rev. 108(7) (2008) 2238. 10. R.P. Singh, R.D. Verma, D.T. Meshri, J.M. Shreeve, Angew. Chem. Int. Ed. 45(22) (2006) 3584. 11. K. Binnemans, Chem. Rev. 105(11) (2005) 4148. 12. F.H. Hurley, US pat. 2446331 (1948). 13. H.L. Chum, V.R. Koch, L.L. Miller, R.A. Osteryoung, J. Am. Chem. Soc. 97 (1975) 3264. 14. J. Robinson, R.A. Osteryoung, J. Am. Chem. Soc. 101 (1979) 323. 15. J.S. Wilkes, J.A. Levisky, R.A. Wilson, C.L Hussey, Inorg. Chem. 21 (1982) 1263. 16. T.B. Scheffler, C.L. Hussey, K.R. Seddon, C.M. Kear, P.D. Armitage, Inorg. Chem. 22 (1983) 2099. 17. D. Appleby, C.L. Hussey, K.R. Seddon, J. E. Turp, Nature 323 (1986) 614. 18. A.J. Dent, K.R. Seddon, T. Welton, J. Chem. Soc. Chem. Commun. (1990) 315. 19. T.M. Laher, C.L. Hussey, Inorg. Chem. 22 (1983) 3247. 20. T.B. Scheffler, C.L. Hussey, Inorg. Chem. 23 (1984) 1926. 21. J.A. Boon, J.A. Levisky, J.L. Pflug, J.S. Wilkes, J. Org, Chem. 51 (1986) 480. 22. P.W. Ambler, P.K.G. Hodgson, N.J. Stewart, Eur. Pat. 0558187A (1988). 23. A. Stark, B.L. Maclean, R.D. Singer, J. Chem. Soc., Dalton Trans. (1999) 63. 24. P.N. Davey, C.P. Newman, K.R. Seddon, M.J. Earle, WO Pat. 9919288 (1999), to Quest International B.V., Neth. 25. F.G. Sherif, WO Pat. 9903163 (1999). 26. P. Steichen, WO Pat. 98/50153 (1998). 27. F.G. Sherif, Chin. Pat. 1225617A (1999). 28. F.G. Sherif, L.J. Shyu, US Pat. 5824832 (1998). 29. Y. Chauvin, L. Mussmann, H. Olivier, Angew. Chem. Int. Ed. Engl. 34 (1995) 2698. 30. C.W. Lee, Tetrahedron Lett. 40 (1999) 2461. 31. C.J. Adams, M.J. Earle, K.R. Seddon, Green Chem. 2 (2000) 21-24. 32. Y. Chauvin, B. Gilbert, I. Guibard, J. Chem. Soc. Chem. Commun. (1990) 1715. 33. R.T. Carlin, J.S. Wilkes, J. Mol. Catal. 63 (1990) 125. 34. A.Z. Paulo, E.L.J. Dullius, S. Einloft, R.F.D. Souza, J. Dupont, Polyhedron 15 (1996) 1217. 35. C.J. Adams, M.J. Earle, K.R. Seddon, Chem. Commun. (1999) 1043. 36. C.P. Mehnet, Chem. Eur. J. 11 (2005) 50. 37. E. Benazzi, A. Hirschauer, J.F. Joly, J.Y. Bernhard, Eur. Pat. 0553009 (1993) Institut Francais du Petrole, France. 38. E. Benazzi, H. Olivier, Y. Chauvin, J.F. Joly, A. Hirschauer, Abstr. Pap. Am. Chem. Soc. Am. Soc. 212 (1996) 45. 39. E. Benazzi, Y. Chauvin, A. Hirschauer, N. Ferrer, H. Olivier, J.Y. Bernhard, US Pat. 5693585 (1997) Institut Francais du Petrole, France. 40. F.G. Sherif, L.-J. Shyu, WO Pat. 9903163 (1999) Akzo Nobel Inc., USA. 41. C. deCastro, E. Sauvage, M.H. Valkenberg, W.F. Holderich, J. Catal. 196 (2000) 86. 42. B.B. Randolph, E.I. Sughrue, G.W. Dodwell, US Pat. Application 20050033 (2005) Hitchcock Fish & Dollar, Richmond, USA. 43. W.F. Holderich, H.H. Wagner, M.H. Valkenberg, Spec. Publ. R. Soc. Chem. 266 (2001) 76. 44. M.H. Valkenberg, C. deCastro, W.F. Holderich, Stud. Surf. Sci. Catal. (2001) 135, 4629. 45. M. H. Valkenberg, C. deCastro, W.F. Holderich, Top. Catal. 14 (2001) 139. 46. M.H. Valkenberg, C. deCastro, W.F. Holderich, Green Chem. 4 (2002) 88. 47. B. Gadenne, P. Hesemann, J.J.E. Moreau, Chem. Commun. (2004) 1768. 48. http://www.synetix.com/technical/news.htm (2004) Johmson Matthey Catalysis. 49. H.A. Øye, M. Jagtoyen, T. Oksefjell, J.S. Wilkes, Mater. Sci. Forum 73 (1991) 183. 50. Z.J. Karpinski, R.A. Osteryoung, Inorg. Chem. 23 (1984) 1491. 51. Y. Chauvin, S. Einloft, J. Olivier, Ind. Eng. Chem. Res. 34 (1995) 1149. 52. S.D. Williams, J.P. Schoebrechts, J.C. Selkirk, G. Mamantov, J. Am. Chem. Soc. 109 (1987) 2218. 53. Y. Chauvin, H. Olivier, CHEMTECH 25 (1995) 26. 54. G. W. Parshall, J. Am. Chem. Soc. 94 (1972) 8716. 55. M.S. Sitze, E.R. Shreiter, E.V. Patterson, R.G. Freeman, Inorg. Chem. 40 (2001) 2298. 56. W.L.F. Armarego, D.D. Perrin, Purification of Laboratory Chemicals, 4th Ed., Butterworth-Heinemann: London (1997). 57. A.A. Fnnin, D.A. Floreani, L.A. King, J.S. Landers, B.J. Piersma, D.J. Stech, R.L. Vaughn, J.S. Wilkes, J.L. Williams, J. Phys. Chem. 88 (1984) 2614. 58. K.R. Harris, L.A. Woolf, M. Kanakubo, J. Chem. Eng. Data 50 (2005) 1777. 59. C.J. Dymek, J.J. Stewart, Inorg. Chem. 28 (1989) 1472. 60. A.G. Avent, P.A. Chaloner, M.P. Day, K.R. Seddon, T. Welton, J. Chem. Soc., Dalton Trans. (1994) 3405. 61. S.I. Smedley, The Interpretation of Ionic Conductivity in Liquids, Plenum, New York (1980) Ch. 3. 62. R.L. Perry, K.M. Jones, W.D. Scott, Q. Liao, C.I. Hussey, J. Chem. Eng. Data 40 (1995) 615. 63. Q. Liao, C.I. Hussey, J. Chem. Eng. Data 41 (1996) 1126. 64. T.J. Melon, J. Joyce, J.T. Maloy, J.A. Boon, J.S. Wilkes, J. Electrochem. Soc. 137 (1990) 3865. 65. A. Blaschette, E. Wieland, G. Seurig, D. Koch, F. Safari, Z. Anorg. Allg. Chem. 506 (1983) 75. 66. J.E. Gordon, J. Org. Chem. 30 (1965) 2760. 67. A.J. Jeapes, G.C. Rooney, J.E. Hatter, T. Welton, WO pat. 0115175 (2000). 68. P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 39 (2000) 3772. 69. T.A. Zawodzinski, R.A. Osteryoung, Inorg. Chem. 26 (1987) 2920. 70. D. Zhao, M. Wu, Y. Kou, E. Min, Catal. Today 74 (2002) 157. 71. A.A.K. Abdul-Sada, A.M. Greenway, K.R. Seddon, T. Welton, Org. Mass Spectrom. 28 (1993) 759. 72. Y.L. Yang, Y. Kou, Chem. Commun. 2 (2004) 226. 73. C. Scordilis-Kelley, J. Fuller, R.T. Carlin, J.S. Wilkes, J. Electrochem. Soc. 139 (1992) 694. 74. I.C. Quarmby, R.A. Osteryoung, J. Am. Chem. Soc. 116 (1994) 2649. 75. P. Koronaios, D. King, R.A. Osteryoung, Inorg. Chem. 37 (1998) 2028. 76. B. Ellis, W. Keim, P. Wasserscheid, Chem. Commun. (1999) 337. 77. G.P. Smith, A.S. Dworkin, R.M. Pagni, S.P. Zingg, J. Am. Chem. Soc. 111 (1989) 525. 78. M. Ma, K.E. Johnson. J. Am. Chem. Soc. 117 (1995) 1508. 79. C.L. Hussey, Adv. Molten Salt Chem. 5 (1983) 185. 80. J. Howarth, K. Hanlon, D. Fayne, P. McCormac, Tetrahedron Lett. 38 (1997) 3097. 81. A.J. Arduengo, R.I. Harlow, M. Kline, J. Am. Chem. Soc. 113 (1991) 361. 82. A.J. Arduengo, H.V.R. Dias, R.L. Harlow, M. Kline, J. Am. Chem. Soc. 114 (1992) 5530. 83. L. Xu, W. Chen, J. Xiao, Organometallics 19 (2000) 1123. 84. W.J. Mehm, J.B. Nold, R.C. Zernzach, Aviat. Space Environ. Med. 57 (1986) 362. 85. C.J. Adams, M.J. Earle, G. Roberts, K.R. Seddon, Chem.Commun. (1998) 2097. 86. F. Favre, A. Forestiere, F. Hugues, H. Olivier-Bourbigou, J.A. Chodorge, Oil Gas-Eur. Mag. (2005) 2, 83. 87. S. Einloft, K.F. Dietrich, R.F. De Souza, J. Dupont Polyhedron 15 (1996) 3257. 88. Y. Chauvin, H. Olivier, C.N. Wyrvalski, L.C. Simon, R.F. de Souza, J. Catal. 165 (1997) 275. 89. L.C. Simon, J. Dupont, R.F. Souza, Appl. Catal. A: Gen. 175 (1998) 215. 90. Y. Chauvin, A. Hirschauer, H. Olivier, J. Mol. Catal. 92 (1994) 155. 91. K. Qiao, Y. Deng, Tetrahedron Lett. 44 (2003) 2191. 92. Y. Chauvin, H. Olivier, CHEMTECH (1995) 26. 93. L. Guterman, New Sci. 160 (1998) 24. 94. L. Green, I. Hemeon, R.D. Singer, Tetrahedron Lett. 41 (2000) 1343. 95. M. Freemantle, Chem. Eng. News (2000) 20. 96. T. Welton, Coord. Chem. Rev. 248 (2004) 2459. 97. M.J. Earle and K.R. Seddon, Pure Appl. Chem. 72 (2000) 1391. 98. E. Xing, Z. Mi, C. Xin, L. Wang and X. Zhan, J. Mol. Catal. A: Chem. 231 (2005) 161. 99. C.A. Cohen and C.W. Muessig, US Pat. 3,381,046 (1968), to Esso Research and Engineering Company. 100. R.V. Norton, D.H. Fisher, G.M. Graham and P.J. Frank, US Pat. 4,355,194 (1982), to Ashland Oil Inc. 101. E.J. Janoski, A. Schneider and R.E. Ware, US Pat. 4,288,644 (1981), to Suntech Inc. 102. R.V. Norton and S.C. Howe, US Pat. 4,270,014 (1981), to Ashland Oil Inc. 103. A. Schneider, R.E. Ware and E.J. Janoski, US Pat. 4,086,284 (1978), to Suntech Inc. 104. A. Tanaka, JP Pat. 2002255866 (2002), to Nippon Zeon Co. Ltd. 105. A. Tanaka, JP Pat. 2002302460 (2002), to Nippon Zeon Co. Ltd. 106. N. Ogoshi, T. Mase and K.W. Tanakaakira, JP Pat. 2003128593 (2003), to Nippon Zeon Co. Ltd. 107. E. Xing, X. Zhang, L. Wang and Z. Mi, Green Chem. 9 (2007) 589. 108. B.H. Jeong, J.S. Han, S.W. Ko, J.H. Lee and B.J. Lee, J. Ind. Eng. Chem. 13 (2007) 310. 109. B.H. Jeong, J.S. Han, S.W. Ko, J.H. Lee and B.J. Lee, J. Korean Ind. Eng. Chem. 18 (2007) 36. 110. N. Tsuzuki, T. Hama, M. Kawada, A. Hasui, R. Konishi, S. Shiwa, Y. Ochi, S. Futaki, K. Kitagawa, J. Pharm. Sci. 83 (1994) 481. 111. I.A. Novakov, B.S. Orlinson, Polym. Sci. Ser. C 47 (2005) 50. 112. Y. Hattori, T. Miyajima, M. Sakai, Y. Nagase, N. Nemoto, Polymer 49 (2008) 2825. 113. X.W. Zhang, L.Q. Qiu, R. Tao, Z.-T. Mi, Petrochem. Technol. 28 (1999) 548. 114. L. Wu, J. Cui, M. Ji, M. He, F. Tian, T. Cai, Petrochem. Technol. 36 (2007) 1210. 115. K. Honna, M. Sugimoto, N. Shimizu, K. Kurisaki, Chem. Lett. 15 (1986) 315. 116. M. Navratilova, K. Sporka, Appl. Catal. A 203 (2000) 127. 117. G.C. Lau, W.F. Maier, Langmuir 3 (1987) 164. 118. G.A. Olah, O. Farooq, J. Org. Chem. 51 (1986) 5410. 119. Y. Ku, H. Yang, Y. Deng, Petrochem. Technol. 31 (2002) 345. 120. M.Y. Huang, J.C. Chang, J.C. Lin, K.H. Lin, J.C. Wu, US Pat. 7,488,860, 2009. 121. [17] N. Takaishi, Y. Inamoto, K. Aigami, Chem. Lett. (1973) 1185. 122. E.M. Engler, M. Farcasiu, A. Sevin, J.M. Cense, P.V.R. Schleyer, J. Am. Chem. Soc. 95 (1973) 5769. 123. G. Sartori, R. Maggi, Chem. Rev. 106 (2006) 1077. 124. K. Gopal, S.B. Srivastava, S. Shukla, J.L. Bersillon, J. Environ. Biol. 25 (2004) 469. 125. J.H. Potgieter, S.S. Potgieter-Vermaak, P.D. Kalibantonga, Miner. Eng. 19 (2006) 463. 126. M. Alexandre, P. Dubois, Mater. Sci. Eng. 28 (2000) 1. 127. D. Porter, E. Metcalfe, M.J.K. Thomas, Fire Mater. 24 (2000) 45. 128. X. Fu, S. Qutubuddin, Polymer 42 (2001) 807. 129. A. Usuki, N. Hasegawa, H. Kasoura, T. Okamoto, Nano Lett. 1 (2001) 271. 130. H. Tetsuka, T. Ebina, T. Tsunoda, H. Nanjo, F. Mizukami, Nanotechnology 18 (2007) 355701. 131. M. Wei, S. Shi, J. Wang, Y. Li, X. Duan, J. Solid State Chem. 177 (2004) 2534. 132. M. Zanetti, S. Lomakin, G. Camino, Macromol. Mater. Eng. 279 (2000) 1. 133. J.W. Gilman, W.H. Awad, R.D. Davis, J. Shields, R.H. Harris, C. Davis, A.B. Morgan, T.E. Sutto, J. Callahan, P.C. Trulove, H.C. Delong, Chem. Mater. 14 (2002) 3776. 134. F.A. Bottino, E. Fabbri, I.L. Fragala, G. Malandrino, A. Orestano, F. Pilati, A. Pollicino, Macromol. Rapid Commun. 24 (2003) 1079. 135. A. Usuki, A. Koiwai, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, J. Appl. Polym. Sci. 55 (1995) 119. 136. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, A. Okada, Macromolecules 30 (1997) 6333. 137. N. Ogata, S. Kawakage, T. Ogihara, Polymer 38 (1997) 5115. 138. N. Ogata, G. Jimenez, H. Kawai, T, Ogihara, J. Polym. Sci. B: Polym. Phys. 35 (1997) 389. 139. H. Ohno, Electrochemical Aspects of Ionic Liquids, John Wiley & Sons, Hoboken, NJ (2005). 140. [19] F. Yan, J. Texter, Chem. Commun. 25 (2006) 2696. 141. E. Rodil, L. Aldous, C. Hardacre, M. C. Lagunas, Nanotechnology 19 (2008) 105603. 142. A. Riisager, R. Fehrmann, S. Flicker, R. van Hal, M. Haumann, P. Wasserscheid, Angew. Chem. Int. Ed. 44 (2005) 815. 143. H. Hagiwara, Y. Sugawara, K. Isobe, T. Hoshi, T. Suzaki, Org. Lett. 6 (2004) 2325. 144. S. Breitenlechner, M. Fleck, T.E. Müller, A. Suppan, J. Mol. Catal. A: Chem. 214 (2004) 175. 145. J. Huang, T. Jiang, H.X. Gao, B. Han, Z. Liu, W.Z, Wu, Y.H. Chang, G.T. Zhao, Angew. Chem. Int. Ed. 43 (2004) 1397. 146. S. Miao, Z. Liu, B. Han, J. Huang, Z. Sun, J. Zhang, T. Jiang, Angew. Chem. Int. Ed. 45 (2006) 266. 147. P.N. Barnes, K.A. Grant, K.J. Green, N. D. Lever, WO Pat. 0040673, 2000. 148. G. Roberts, C.M. Lok, C.J. Adams, K.R. Seddon, M.J. Earle, J.T. Hamill, US Pat. 6255504 B1, to Unichema Chemie BV (2001). 149. G. Roberts, C.M. Lok, C.J. Adams, K.R. Seddon, M.J. Earle, J.T. Hamill, US Pat. 6316643 B1, to Unichema Chemie BV (2001). 150. E. Xing, X. Zhang, L. Wang, Z. Mi, Catal. Commun. 6 (2005) 737. 151. J.J. Lin, I-Jein Chen, C.C. Chou, Macromol. Rapid Commun. 24 (2003) 492. 152. M. Misono, T. Okuhara, CHEMTECH 23 (1993) 23. 153. P. Rao, S. Vatcha, Oil and Gas J. September (1996) 56. 154. J. Weitkamp, Y. Traa, Catal. Today 49 (1999) 193. 155. E.E. Getty, R.S. Drago, Inorg Chem. 29 (6) (1990) 1186. 156. X. Hu, G.K. Chuah, S. Jaenicke, Appl. Catal. A: Gen. 217(1) 2001 1. 157. J.H. Clark, K. Martin, A.J. Teasdale, S.J. Barlow. J. Chem. Soc. Chem. Commun. (1995) 2037. 158. G.A. Fuentes, J.V. Boegel, B.C. Gates, J. Catal. 1982, 78, 436. 159. S. Jun, R. Ryoo, J. Catal. 195 (2) (2000) 237. 160. R. Ryoo, M.J. Kim, Chem. Commun. 2225, 1997. 161. X. Hu, M.L. Foo, G.K. Chuah, S. Jaenicke, J. Catal. 195 (2) (2000) 412. 162. C. Bronner, A. Forestiere, F. Hugues, US Pat. 6203712 B1 (2001) Institut Francais du Petrole, France.en_US
dc.identifier.urihttp://hdl.handle.net/11455/10674-
dc.description.abstract本論文主要是利用酸性氯化鋁酸鹽離子液體做為觸媒,用於環烷烴異構化反應研究。主要研究方向是(1)合成外向型四氫雙環戊二烯,也就是高能燃料JP-10,(2)異構化合成金剛烷,(3)以插層之蒙脫土為擔體,製備負載型離子液體,進行異構化反應研究,(4)開發新的擬固定床離子液體反應器。其詳細探討可分為四個部分,如下: 第一部份 利用不同可調酸性之氯化鋁酸鹽離子液體(chloroaluminate ionic liquids)當觸媒,進行內向型四氫雙環戊二烯(endo-tetrahydrodicyclopentadiene, endo-THDCPD)異構化合成外向型異構物(exo-isomer,高能燃料JP-10)反應研究。觸媒活性及選擇性可利用調整離子液體中三氯化鋁(AlCl3)之莫耳分率達最適化。由設計適當的觸媒系統及反應條件,許多副反應例如結構重組、烷化、裂解、雙聚合等反應之副產物可減至最少。最佳觸媒系統是選用1-丁基-3-甲基-咪唑氯化物(1-butyl-3-methylimidazolium chloride)和0.6-0.65莫耳分率三氯化鋁所製備的離子液體。使用最適化觸媒系統,內向型四氫雙環戊二烯在50 °C可快速進行異構化反應,轉化率高達98.9%,並具有100%外向型四氫雙環戊二烯產品選擇性。離子液體當觸媒之壽命亦進行反應測試,在使用多次後,其反應活性並沒有明顯的減少。 第二部分 利用氯化鋁酸鹽離子液體當觸媒將外向型四氫雙環戊二烯異構化,以合成金剛烷(Adamantane, ADM)。在使用吡啶氯化氫(pyridine hydrochloride) 和0.65莫耳分率三氯化鋁所製備的離子液體,70 °C反應6小時,金剛烷的產率可達21.9%。在此反應條件下金剛烷的選擇性為66%,產物很容易和觸媒分離。在此亦提出內向型/外向型四氫雙環戊二烯在酸性觸媒下的異構化反應機構,四氫雙環戊二烯會經由一個帶陽電荷的碳原子,轉變成金剛烷主產物,或進行開環反應合成十氫萘 (decalin) 或其他飽和十碳雙環副產物。 第三部分 將具有不同長度烷基鹵化鹽經由離子交換插層進入蒙脫土層間結構,其中1-十六碳基-3-甲基咪唑氯化物 (1-hexadecyl-3-methylimidazolium chloride)、十六碳基三甲基銨鹽溴化物 (hexadecyltrimethylammonium bromide)、雙十六碳基雙甲基銨鹽溴化物(dihexadecyldimethylammonium bromide)、三丁基十六碳基磷鹽溴化物(tributylhexadecylphosphonium bromide)插層後,可使矽酸鹽層間距由12 Å撐開至37–41 Å(由X射線繞射測得)。改質後黏土先用吡啶氯化氫和三氯化鋁混合物預處理,再含浸氯化鋁酸鹽離子液體觸媒,最後將內向型四氫雙環戊二烯異構化合成外向型異構物。新開發的黏土擔體離子液體觸媒對主產品具有相當定量轉化率及選擇性,並可重複多次使用 第四部分:針對氯化鋁酸鹽離子液體在環烷烴異構化反應之特性,開發新的擬固定床離子液體反應器,並進行內向型四氫雙環戊二烯異構化反應研究。由於離子液體觸媒和反應物及產物具有相當不同之比重及不互溶特性,此液體觸媒可像固定床之固體觸媒固定在媒床不動,而在連續式反應中產物能通過並和觸媒自動分離。在此新的反應器中,觸媒高度45公分,反應物以小液滴狀由觸媒底部浮到頂部約5-6秒,在80 °C下,內向型四氫雙環戊二烯的轉化率約為10.7%,主產品外向型四氫雙環戊二烯的選擇性為100%。增長反應管長度、增加回流時間、或反應管加入填充物應可有效提高反應轉化率。zh_TW
dc.description.abstractChloroaluminate ionic liquids (ILs) were used as acidic catalysts for isomerization of cycloalkane. The main studies were (1) producing exo-tetrahydrodicyclopentadiene, exo-THDCPD, also called high energy fuel JP-10, (2) producing adamantane (ADM), (3) preparation of supported chloroaluminate IL catalyst with intercalated montmorillonite clay as support, and studied on isomerization, (4) developing a new pseudo-fixed bed IL reactor. The thesis is divided into four parts: Part 1 The isomerization of endo-tetrahydrodicyclopentadiene (endo-THDCPD) to its exo-isomer (JP-10) has been investigated by using chloroaluminate ionic liquids (ILs) as catalysts. Undesirable by-products derived from side-reactions could be minimized by appropriate catalyst design and adjustment of the reaction conditions. The catalyst system was further optimized by selecting 1-butyl-3-methylimidazolium chloride as the basic IL and adding 0.60~0.65 mole fraction of AlCl3 as the promoter. Using the optimized catalyst system, the isomerization of endo-THDCPD to exo-THDCPD proceeded at a fast rate at 50 C with 98.9% conversion and 100% selectivity. The catalyst longevity has been demonstrated by recycling the IL several times without a noticeable reduction in catalytic activity. Part 2 Adamantane (ADM) was synthesized by isomerization of exo-THDCPD using chloroaluminate ILs as the catalyst. The yield of ADM was optimized to obtain 21.9% under the conditions of 70 C for 6 h and pyridine hydrochloride/AlCl3 at an AlCl3 mole fraction of 0.65. Under these conditions, the selectivity of ADM was 66% and the product mixture was easily recovered from the IL catalyst phase. It is proposed that endo-/exo- isomerization occurs via a carbocation mechanism leading to ADM, the main product, with ring-opening to decalin and other C10H18 by-products. Part 3 Various halide salts with different alkyl lengths were allowed to intercalate into the layer structure of sodium montmorillonite clay through an ion exchange reaction. Intercalation of 1-hexadecyl-3-methylimidazolium chloride, hexadecyltrimethylammonium bromide, dihexadecyldimethylammonium bromide, and tributylhexadecylphosphonium bromide could expand the spacing of the silicate layers from 12 Å to 37~41 Å (measured by X-ray diffraction). The modified clays were pretreated with the pyridine hydrochloride/AlCl3 mixture and used for suitably supporting a chloroaluminate IL catalyst for the isomerization of endo-THDCPD into the corresponding exo-isomer. Nearly quantitative conversion to the desired product and nearly quantitative selectivity were observed for the newly developed clay-supported IL catalysts, which were proven to be recyclable. Part 4 Base on the special properties of chloroaluminate IL on isomerization of cycloalkane, a new pseudo-fixed bed IL reactor was developed and studied for isomerization of an endo-THDCPD. With very different density and immiscible properties between IL catalyst and reactant/product, the liquid catalyst is as immobile as solid catalyst in fixed bed, and product passes through and separate from catalyst automatically at continue reaction. For the new reactor with 45 cm height of liquid catalyst, the reactant droplet floats from bottom to top of the IL was about 5-6 s, the isomerization of endo-THDCPD proceeded with 10.7% conversion and 100% selectivity of exo-THDCPD at 80 C. Elongating IL column, increasing cycle time and filling packing in the column all can effectively improve conversion for each pass through the column reactor.en_US
dc.description.tableofcontents誌 謝.......................................................................................................................... i 摘 要.......................................................................................................................... ii Abstract..................................................................................................................... iv Contents..................................................................................................................... vi List of Tables............................................................................................................. x List of Figures........................................................................................................... xii Abbreviations............................................................................................................ xvii Chapter 1. Introduction of Haloaluminate Ionic Liquids 1-1. Historical development............... ....................................................................... 2 1-2. Synthesis and Purification of Haloaluminate ILs............................................... 4 1-2-1. Synthesis ................................................................................................ 4 1-2-2. Purification of ionic liquids.................................................................... 9 1-3. Characteristic Properties of Haloaluminate ILs.................................................. 10 1-3-1. Vapor Pressure......................................................................................... 10 1-3-2. Melting Point........................................................................................... 10 1-3-3. Density..................................................................................................... 12 1-3-4. Viscosity................................................................................................... 12 1-3-5. Conductivity............................................................................................ 15 1-3-6. Electrochemical Windows....................................................................... 18 1-3-7. Stability ................................................................................................... 22 1-3-8. Solvency................................................................................................... 23 1-3-9. Acidity and Coordination Ability............................................................. 23 1-3-10. Safety and Toxicology........................................................................... 27 1-4. Application of Haloaluminate ILs in catalysis.................................................... 27 1-4-1. Friedel–Crafts reaction............................................................................. 27 1-4-2. Diels–Alder reactions............................................................................... 31 1-4-3. Dimerization and Oligomerization........................................................... 32 1-4-4. Alkylation................................................................................................. 35 1-4-5. Hydrogenation.......................................................................................... 36 1-4-6. Isomerization............................................................................................ 36 1-4-7. Catalytic cracking of poly(ethene) .......................................................... 38 1-4-8. Acylative cleavage of cyclic and acyclic ethers...................................... 39 1-4-9. Dissolution of kerogen............................................................................. 39 1-5. Outline of the thesis............................................................................................. 40 Chapter 2. Preparation of exo-Tetrahydrodicyclopentadiene by Recyclable and Acidity-Adjustable Chloroaluminate Ionic Liquid Catalyst 2-1. Introduction........................................................................................................ 41 2-2. Experimental...................................................................................................... 44 2-2-1. Materials................................................................................................... 44 2-2-2. Preparation of acidic chloroaluminate ILs............................................... 44 2-2-3. Isomerization of endo-THDCPD by chloroaluminate ILs....................... 45 2-2-4. Analytical methods................................................................................... 46 2-3. Results and discussion........................................................................................ 47 2-4. Conclusions........................................................................................................ 60 Chapter 3. Isomerization of exo-Tetrahydrodicyclopentadiene to Adamantane Using an Acidity-Adjustable Chloroaluminate Ionic Liquid Catalyst 3-1. Introduction........................................................................................................ 68 3-2. Experimental...................................................................................................... 71 3-2-1. Materials................................................................................................... 71 3-2-2. Preparation of acidic chloroaluminate ILs............................................... 71 3-2-3. Isomerization of exo-THDCPD to ADM.................................................. 72 3-2-4. Analytical methods................................................................................... 72 3-3. Results and discussion........................................................................................ 73 3-4. Conclusions......................................................................................................... 82 Chapter 4 Isomerization of endo-Tetrahydrodicyclopentadiene over Clay-Supported Chloroaluminate Ionic Liquid Catalysts 4-1. Introduction........................................................................................................ 88 4-2. Experimental...................................................................................................... 91 4-2-1. Materials................................................................................................... 91 4-2-2. Preparation of Na+.MMT ionic exchanging with halide salts to I+/MMT .................................................................................................... 92 4-2-3. Pretreatment of I+/MMT with PHC/AlCl3................................................ 92 4-2-4. Impregnation of the PHC/AlCl3 catalyst on the pretreated I+/MMT........ 93 4-2-5. Catalytic isomerization of endo-THDCPD.............................................. 93 4-2-6. Instruments and analysis.......................................................................... 94 4-3. Results and discussion........................................................................................ 95 4-3-1. Preparation of the organic-salt intercalated clays as the supports........... 95 4-3-2. Isomerization of endo-THDCPD............................................................. 101 4-3-3. Catalyst recyclability............................................................................... 104 4-4. Conclusion.......................................................................................................... 105 Chapter 5 Development of a new Pseudo-Fixed Bed Ionic Liquid Reactor 5-1. Introduction........................................................................................................ 110 5-2. Experimental...................................................................................................... 112 5-2-1. Materials................................................................................................... 112 5-2-2. Preparation of acidic chloroaluminate ILs............................................... 112 5-2-3. New designed pseudo-fixed bed ionic liquid reactor............................... 113 5-2-4. Isomerization of exo-THDCPD to ADM................................................. 113 5-2-5. Analytical methods.................................................................................. 114 5-3. Results and discussion....................................................................................... 115 5-4. Conclusions........................................................................................................ 117 Chapter 6 Summary.................................................................................. 120 References.............................................................................................................. 122 List of Publications............................................................................................. 131zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.subjectchloroaluminate ionic liquidsen_US
dc.subject氯化鋁酸鹽離子液體zh_TW
dc.subjectcycloalkaneen_US
dc.subjectisomerizationen_US
dc.subject環烷烴zh_TW
dc.subject異構化反應zh_TW
dc.title氯化鋁酸鹽離子液體在環烷烴異構化之應用zh_TW
dc.titleApplication of Chloroaluminate Ionic Liquids on Cycloalkane Isomerizationen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:材料科學與工程學系
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.