Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10677
DC FieldValueLanguage
dc.contributor劉典謨zh_TW
dc.contributorDean-Mo Liuen_US
dc.contributor楊聰仁zh_TW
dc.contributorTsong-Jen Yangen_US
dc.contributor.advisor曾文甲zh_TW
dc.contributor.advisorWen-Jea Tsengen_US
dc.contributor.author郭旻鑫zh_TW
dc.contributor.authorKuo, Min-Hsinen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:45:47Z-
dc.date.available2014-06-06T06:45:47Z-
dc.identifier.citation1. X. F. Zhou, Z. L. Hu, Y. Chen, H.Y. Shang, “Microscale sphere assembly of ZnO nanotubes,” Mater. Res. Bull., 43, 2790-2798, 2008 2. Z. W. Pan, Z. R. Dai, Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science, 291, 1947-1949, 2001 3. B.C. Lee, O. Voskoboynikov, C.P. Lee, “III-V Semiconductor nano-rings,” Physica E, 24, 87-91, 2004 4. T. Ohira, O. Yamamoto, Y. Iida, Z. Nakagawa, “Antibacterial activity of ZnO powder with crystallographic orientation,” J. Mater. Sci.-Mater. Med., 19, 1407-1412, 2008 5. P. Tartaj, M. P. Morales, S. V. Verdaguer, T. G. Carreno, C. J. Serna, “The preparation of magnetic nanoparticles for applications in biomedicine,” J. Phys. D: Appl. Phys., 36, 182-197, 2003 6. S. W. Cao, Y. J. Zhu, M. Y. Ma, L. Li, L. Zhang, “Hierarchically Nanostructured Magnetic Hollow Spheres of Fe3O4 and γ-Fe2O3 : Preparation and Potential Application in Drug Delivery,” J. Phys. Chem. C, 112, 1851-1856, 2008 7. I. Baker, Q. Zeng, W. Li, C. R. Sullivan, “Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia,” J. Appl. Phys., 99, 08H106, 2006 8. C. Hu, Z. Gao, X. Yang, “Hematite Hollow Spheres with Excellent Catalytic Performance for Removal of Carbon Monoxide,” Chem. Lett., 35, 1288-1289, 2006 9. X. W. Lou, L. A. Archer, Z. Yang, “Hollow Micro-/Nanostructures: Synthesis and Applications,” Adv. Mater., 20, 3987-4019, 2008 10. X. L. Zhang, R. Qiao, J. C. Kim, Y. S. Kang, “Inorganic Cluster Synthesis and Characterization of Transition-Metal-Doped ZnO Hollow Spheres,” Cryst. Growth Des., 8, 2609-2613, 2008 11. C. Song, C. Wang, H. Z. X. Wu, L. Dong, Y. Chen, “ Preparation, Characterization and Catalytic Activity for CO Oxidation of SiO2 Hollow Spheres Supporting CuO Catalysts,” Catal. Lett., 120, 215-220, 2008 12. P. M. Arnal, M. Comotti, F. Schith, “High-Temperature-Stable Catalysts by Hollow Sphere Encapsulation,”Angew. Chem. Int. Ed., 45, 8224-8227, 2006 13. F. Caruso, R. A. Caruso, H. Mohwald, “Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating,” Science, 282, 1111-1114, 1998 14. F. Caruso, X. Shi, R. A. Caruso, A, Susha, “ Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core Particles,” Adv. Mater., 13, 740-744, 2001 15. C. J. Martinez, B. Hockey, C. B. Montgomery, S. Semancik, “ Porous Tin Oxide Nanostructured Microspheres for Sensor Applications,” Langmuir, 21, 7937-7944, 2005 16. F. Caruso, M. Spasova, A. Susha, M. Giersig, R. A. Caruso, “ Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach,” Chem. Mater., 13, 109-116, 2001 17. A. Khanal, Y. Inoue, M. Yada, K. Nakashima, “Synthesis of Silica Hollow Nanoparticles Templated by Polymeric Micelle with Core-Shell-Corona Structure,” J. Am. Chem. Soc., 129, 1534-1535, 2007. 18. S. W. Kim, M. Kim, W. Y. Lee, T. Hyeon, “ Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions,” J. Am. Chem. Soc., 124, 7642-7643, 2002 19. H. Xu, W. Wei, C. Zhang, S. Ding, X. Qu, J. Liu, Y. Lu, Z. Yang, “Low-temperature facile template synthesis of crystalline inorganic composite hollow spheres,” Chem. Asian J. 2, 828-836, 2007. 20. S. B. Yoon, K. Sohn, J. Y. Kim, C. H. Shin, J. S. Yu, T. Hyeon, “Fabrication of Carbon Capsules with Hollow Macroporous Core/Mesoporous Shell Structures,” Adv. Mater., 14, 19-21, 2002 21. F. J. Suarez, M. Sevilla, S. Alvarez, T. V. Solis, A. B. Fuertes, “ Synthesis of Highly Uniform Mesoporous Sub-Micrometric Capsules of Silicon Oxycarbide and Silica,” Chem. Mater., 19, 3096-3098, 2007 22. J. Zhao, X. Zhao, Y. Liu, N. Tao, H. Bala, H. Zhang, Y. Jiang, K. Yu, Y. Zhu, Y. Deng, H. Yang, Z. Wang, “Ti-Si oxide composite spheres with hollow interior fabricated by emulsion/interface technique employing Ti ionic liquid,” Mater. Chem. Phys., 93, 487-494, 2005. 23. H. Xu, W. Wang, “Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall,” Angew. Chem. Int. Ed., 46, 1489-1492, 2007 24. Q. Peng, Y. Dong, Y. Li, “ZnSe Semiconductor Hollow Microspheres,” Angew. Chem. Int. Ed., 42, 3027-3030, 2003 25. L. J. Mao, C. Y. Liu, J. Liab, “ Template-free synthesis of VOx hierarchical hollow spheres,” J. Mater. Chem., 18, 1640-1643, 2008 26. Y. Wang, L. Cai, Y. Xia, “Monodisperse Spherical Colloids of Pb and Their Use as Chemical Templates to Produce Hollow Particles,” Adv. Mater., 17, 473-477, 2005 27. H. Qian, G. Lin, Y. Zhang, P. Gunawan, R. Xu, “A new approach to synthesize uniform metal oxide hollow nanospheres via controlled precipitation,” Nanotechnology, 18, 355602(6pp), 2007 28. Y. Yang, Y. Chu, Y. Zhang, F. Yang, J. Liu, “ Polystyrene-ZnO core-shell microspheres and hollow ZnO structures synthesized with the sulfonated polystyrene templates,” J. Solid State Chem., 179, 470-475, 2006 29. Z. Deng, M. Chen, G. Gu, L. Wu, “A Facile Method to Fabricate ZnO Hollow Spheres and Their Photocatalytic Property,” J. Phys. Chem. B, 112, 16-22, 2008 30. Y. Zhang, E. W. Shi, Z. Z. Chen, B. Xiao, “Fabrication of ZnO hollow nanospheres and “jingle bell” shaped nanospheres,” Mater. Lett., 62, 1435-1437, 2008 31. Y. Zhanga, E. W. Shia, Z. Z. Chena,“Synthesis and magnetic properties of Mn-doped ZnO hollow nanospheres,” J. Cryst. Growth, 310, 2928-2933, 2008 32. Y. Gao, A. D. Li, Z. B. Gu, Q. J. Wang, Y. Zhang, D. Wu, Y. F. Chen, N. B. Ming, “ Fabrication and optical properties of two-dimensional ZnO hollow half-shell arrays,” Appl. Phys. Lett., 91, 031910, 2007 33. H. P. Cong, S. H. Yu, “Hybrid ZnO-Dye Hollow Spheres with New Optical Properties from a Self-Assembly Process Based on Evans Blue Dye and Cetyltrimethylammonium Bromide,”Adv. Funct. Mater., 17, 1814-1820, 2007 34. L. Li, H. Yang, G. Qi, J. Maa, X. Xie, H, Zhao, F. Gao, “Synthesis and photoluminescence of hollow microspheres constructed with ZnO nanorods by H2 bubble templates,” Chem. Phys. Lett., 455, 93-97, 2008 35. Z. Chen, L. Gao, “ A New Route toward ZnO Hollow Spheres by a Base-Erosion Mechanism,” Cryst. Growth Des., 8, 460-464, 2008 36. X. L. Zhang, R. Qiao, J. C. Kim, Y. S. Kang, “Inorganic Cluster Synthesis and Characterization of Transition-Metal-Doped ZnO Hollow Spheres,” Cryst. Growth Des., 8, 2609-2613, 2008 37. H. Zhou, T. Fan, D. Zhang, “ Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates,” Microporous Mesoporous Mater., 100, 322-327, 2007 38. A. Umar, Y. B. Hahn, “Large-quantity synthesis of ZnO hollow objects by thermal evaporation: Growth mechanism, structural and optical properties,” Appl. Surf. Sci., 254, 3339-3346, 2008 39. P. X. Gao, Z. L. Wang, “ Mesoporous Polyhedral Cages and Shells Formed by Textured Self-Assembly of ZnO Nanocrystals” J. Am. Chem. Soc., 125, 11299-11305, 2003 40. G. Shen, Y. Bando, C. J. Lee, “ Synthesis and Evolution of Novel Hollow ZnO Urchins by a Simple Thermal Evaporation Process,” J. Phys. Chem. B., 109, 10578-10583, 2005 41. Y. Zhang, W. Zhang, H Zheng, “ Fabrication and photoluminescence properties of ZnO:Zn hollow microspheres,” Scripta Mater., 57, 313-316, 2007 42. B. Liu, H. C. Zeng, “Fabrication of ZnO “Dandelions” via a Modified Kirkendall Process,” J. Am. Chem. Soc., 126, 16744-16746, 2004 43. 陳青偉,“磁性雙水磷酸氫鈣之製備分析及作為癌症熱療之研究”,國立台北科技大學碩士論文,2008。 44. M. A. Verges1, R. Costo, A. G. Roca, J. F. Marco, G. F. Goya, C. J. Serna, M. P. Morales, “Uniform and water stable magnetite nanoparticles with diameters around the monodomain-multidomain limit,”J. Phys. D: Appl. Phys., 41, 134003 (10pp), 2008 45. 王彥文,“以植入前驅物於膠體模板方式合成單一分散中空氧化鋁暨其他無機物微球之研究,”國立中興大學碩士論文, (2008) 46. K. Kitano, N. Kuwamura, R. Tanaka, R. Santo, T. Nishioka, A. Ichimura, I. Kinoshita, “ Synthesis and characterization of tris(2-pyridylthio)methanido Zn complex with a Zn-C bond and DFT calculation of its one-electron oxidized speciesw,” Chem. Commun., 1314-1316, 2008 47. L. Li, H. Song, X. Chen, “Enhancement of thermal stability of poly(divinylbenzene) microspheres,” Mater. Lett., 62, 179-182, 2008. 48. D. L. A. Faria, S. V. Silva, M. T. Oliveira, “ Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides,” J. Raman Spectrosc., 28, 873-878, 1997 49. A. Zoppi, C. Lofrumento, E. M. Castellucci, Ph. Sciau, “ Al-for-Fe substitution in hematite: the effect of low Al concentrations in the Raman spectrum of Fe2O3,” J. Raman Spectrosc., 39, 40-46, 2008 50. I. V. Chernyshova, M. F. Hochella Jr, and A. S. Madden, “Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition,” Phys. Chem. Chem. Phys., 9, 1736-1750, 2007 51. Q. L. Ye, Y. Kozuka, H. Yoshikawa, K. Awaga, S. Bandow, S. Iijima, “Effects of the unique shape of submicron magnetite hollow spheres on magnetic properties and domain states,” Phys. Rev. B, 75, 224404(5pp), 2007 52. J. Motoyama, T. Hakata, R. Kato, N. Yamashita, T. Morino, T. Kobayashi, H, Honda, “ Size dependent heat generation of magnetite nanoparticles under AC magnetic field for cancer therapy,” BioMagnetic Research and Technology, 6:4, 2008 53. V. S. Kalambur, B. Han, B. E Hammer, T. W. Shield, J. C. Bischof, “In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications,” Nanotechnology, 16, 1221-1233, 2005zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10677-
dc.description.abstract本研究以C2Cl4為反應溶劑,搭配金屬氯化物,對尺寸單一分散之有機模板進行表面改質,再以鍛燒移除模板,合成出中空微球。合成方式是將前驅物藉由植入硬質模板表層,形成核殼結構微球,有別於一般以披覆式合成中空球結構的方法。本研究中吾人將實驗分為兩個部份,首先合成ZnO中空球並探討金屬前驅體之植入機制,以及鍛燒溫度對球體結構之影響;第二部分則合成Pt/Fe2O3複合殼層微球,探討改變Pt前驅物濃度,Pt奈米顆粒於Fe2O3擔體殼層之佈植比例,與對球體微結構之影響。 在第一部份研究中,吾人將改質之有機模板(未鍛燒),以歐傑電子能譜儀(AES)進行縱深分析。結果顯示Zn前驅物是以植入之方式,與有機模板結合;以傅立葉轉換紅外線光譜儀(FTIR),對改質前與後之有機模板進行官能基分析,結果發現-CH=CH2、=CH2官能基之相對強度有所改變。吾人藉此推測前驅物與模板結合與植入過程之可能反應機制。最後分別利用熱重與熱差分析儀(TG/DSC)、場發射掃描式電子顯微鏡(FE-SEM)、穿透式電子顯微鏡(TEM),探討有機模板之熱裂解過程,並觀測在不同鍛燒溫度,對球體微結構之影響。觀測結果顯示,氧化鋅殼層於模板移除溫度前已生成,雖然高溫有助於模板移除以及殼層生成,但溫度過高,反而會造成球體崩塌。 在第二部份之Pt/Fe2O3複合殼層空心球的研究,吾人選用FeCl3以及H2PtCl6作為Fe2O3擔體殼層與活性金屬Pt之前驅物,並藉由改變Pt前驅物的含量,探討對其結構與組成的影響。首先以感應耦合電漿原子放射光譜儀(ICP-MS)對改質有機模板(未鍛燒),進行前驅物植入之元素含量分析。比較改質前驅物,與改質於模板上(Fe/Pt)莫爾比可發現,前驅物於合成反應過程中,存在著競爭植入的現象。接下來分別利用FE-SEM、TEM、BET對鍛燒處理後所得球體進行分析,結果顯示球體表面形貌、中空結構、孔徑分佈並不隨Pt佈植量的提高而有改變,但X光繞射分析儀(XRD)量測發現擔體晶粒尺寸與結晶度,隨Pt佈植量之提高而下降。最後將不同Pt佈植比例中空微球於交流電場施加環境,比較其熱性質之差異,結果發現Pt佈植量的提高,會導致釋放熱能效率下降。zh_TW
dc.description.abstractA facile process has been developed to fabricate hollow spheres with nanoporous shell structure. The process used metal chloride as a precursor and polymeric hard template as the starting materials, together with tetrachloroethylene (C2Cl4) as a solvent. The hollow spheres were obtained after removal of the polymeric template by thermal pyrolysis. The process involves implantation of the precursor into the template surface to become a core-shell structure, different from those reported in the literature. In this work, the experiment was divided into two parts. First, we prepared ZnO hollow spheres, proposed a model to explain the implantation mechanism, and examined effect of calcinations temperature on hollow structure. Second, Pt/Fe2O3 composite hollow spheres were synthesized. Effect of Pt loading on microstructure of the composite particles was examined In the first part, ZnCl2 was used as the precursor. From ESCA/Auger depth analysis, Zn species penetrated to template surface for the implantation process. FTIR observed that -CH=CH2 absorption intensity becomes stronger but =CH2 absorption intensity gets weaker after the implantation. We inferred that the implantation maybe caused by tetrachloroethylene decomposition and Zn precursor recomposed to replace the original organic group on template surface. We also found that calcination temperature plays an important factor in synthesis of the hollow sphere shell. TG/DSC showed the template removal process. From SEM/TEM examination, the ZnO shell crystallized before the template had vanished, although high temperature seemed helpful to template core pyrolysis and formation of hollow spheres shell atructure. As temperature raised further to 700 oC would help the core removal, the spheres shell would collapse. In the second section, we chose FeCl3 and H2PtCl6 as the precursor for the synthesis of Pt/Fe2O3 composite hollow spheres. The H2PtCl6 concentration was adjusted in order to study the effect of Pt loading on shell structure of the composite hollow spheres. From ICP-MS analysis, we found out that the precursors would compete for the implantation. FE-SEM, TEM, BET were also used to analyze the different Pt loadings on the composite hollow spheres. XRD revealed that the Fe2O3 grain size and crystallinity decrease as the Pt loading increased. Finally, composite hollow spheres with different Pt loadings were prepared into electrorheological fluids and subjected to alternating magnetic field. Result revealed that heat transform efficiency descended when the composite hollow spheres with a higher Pt loading.en_US
dc.description.tableofcontents目錄 第一章 緒論......................................1 1-1 前言......................................1 1-2 研究動機..................................2 第二章 文獻回顧..................................5 2-1 中空球之合成..............................6 2-1-1 硬質模板(Hard Template)...................6 2-1-1.1 層接層法(Layer-By-Layer)..................6 2-1-1.2 化學沉積法(Chemical Deposition)...........7 2-1-1.3 化學吸附法(Chemical Adsorption)...........7 2-1-1.4 奈米鑄型(Nanocasting).....................9 2-1-2 軟質模板(Soft Template)...................10 2-1-2.1 乳液微滴模板(Emulsion Droplets Templates).10 2-1-2.2 微囊模板(Micelles/Vesicles Templates).....11 2-1-2.3 氣泡模板(Gas Bubbles Templates)...........11 2-1-3 未使用模板法(Template Free)...............12 2-1-4 犧牲模板(Sacrificial Templates)...........13 2-2 氧化鋅中空球之合成........................14 2-2-1 硬質模板合成氧化鋅中空球..................14 2-2-1.1 化學沉積法................................14 2-2-1.2 化學吸附法................................15 2-2-2 軟質模板合成氧化鋅中空球..................15 2-2-2.1 微囊模板..................................15 2-2-2.2 氣泡模板..................................16 2-2-2.3 生物模板(Biotemplates)....................17 2-2-3 犧牲模板合成氧化鋅中空球..................18 2-2-3.1 熱蒸鍍法 (Thermal Evaporation)............18 2-2-3.2 Kirkendall法..............................19 第三章 實驗流程與分析儀器介紹....................28 3-1 實驗藥品及製程儀器設備....................28 3-1-1 實驗藥品..................................28 3-1-2 製程設備..................................28 3-2 合成ZnO中空球實驗流程.....................29 3-3 合成Pt-Fe2O3複合殼層中空球實驗流程........31 3-4 材料磁滯損失測量..........................33 3-5 分析儀器..................................34 3-5-1 熱重與熱差分析儀(Thermogravimetric/Differential Thermal Analysis,TG/DTA)............................................................................. 34 3-5-2 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectroscopy,FTIR)............................................................................ 34 3-5-3 感應耦合電漿原子放射光譜儀(Inductively Coupled Plasma-Mass Spectrometer)....................................................................................... 34 3-5-4 歐傑電子能譜儀(AES)......... 35 3-5-5 場發射掃描式電子顯微鏡(Field-Emission Scanning Electron MicroscopyFE-SEM).... 35 3-5-6 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)........ 35 3-5-7 X光繞射分析儀(XRD)........................................................................ 35 3-5-8 比表面積分析儀(BET)........................................................................ 36 3-5-9 拉曼光譜分析儀(Raman Spectrophotometer)..................................... 36 第四章 結果與討論....... 37 4-1 前驅物植入模板方式合成ZnO殼層中空球之研究......................... 37 4-1-1 改質後有機微球之縱深元素分析(AES)............................................ 37 4-1-2 改質後有機微球之表面官能基分析(FTIR)....................................... 40 4-1-3 改質後有機微球之熱重/熱差分析(TG/DTA).................................... 44 4-1-4 氧化鋅中空球之SEM顯微結構觀察................................................. 45 4-1-5 氧化鋅中空球之中空結構顯微觀察(TEM)....................................... 48 4-2 以膠體模板粒子製備Pt-Fe2O3複合殼層中空球結構....................... 50 4-2-1 Pt-Fe2O3複合殼層中空球結構分析(ICP).......................................... 50 4-2-2 Pt- Fe2O3複合殼層中空球之SEM微結構分析................................. 52 4-2-3 Pt- Fe2O3複合殼層中空球之TEM中空微結構及選區繞射分析(SAD)......52 4-2-4 Pt-Fe2O3複合殼層中空球之XRD結構分析...................................... 55 4-2-5 Pt-Fe2O3複合殼層中空球拉曼分析(Raman)..................................... 57 4-2-6 Pt-Fe2O3複合殼層中空球之比表面積分析(BET).............................59 4-2-7 熱量吸收率(Specific Absorption Rate,SAR)....................................61 第五章 結論.................... 63 參考文獻 ................................ 64 附錄 ................................. 68 圖目錄 圖1-1 於ISI Web of Knowledge資料庫統計十年內氧化鋅中空微球之論文數.....................2 圖1-2 本研究製程與傳統製程比較示意圖............. 3 圖1-3 不同擔體結構剖面示意圖....................... 4 圖1-4 於ISI Web of Knowledge資料庫統計十年內Pt/Fe2O3之論文數........4 圖2-1 Caruso等人以層階層法合成SiO2中空球流程圖.............................6 圖2-2 Khanal等人以化學沉積法合成SiO2中空球流程圖............................7 圖2-3 Hyeon等人以化學吸附法合成Pd中空球流程圖...............................8 圖2-4 Xu等人以化學吸附法合成TiO2複合中空球流程圖........................... 8 圖2-5 Fuertes等人以奈米鑄型法方式合成SiO2中空球之實驗流程圖........ 9 圖2-6 Zhao等人合成SiO2中空球之實驗流程圖............................................ 10 圖2-7 Xu等人合成Cu2O中空球之實驗流程圖............................................. 11 圖2-8 Li等人以氣體模板合成ZnSe中空球之實驗流程圖.......................... 12 圖2-9 Mao等人未使用模板合成V2O5中空球之實驗流程圖........................ 12 圖2-10 Xia等人以犧牲模板合成PbS中空球之實驗流程圖........................... 13 圖2-11 Qian等人以化學沉積法合成金屬氧化物中空球流程圖.................... 14 圖2-12 Yang等人以化學吸附法合成ZnO中空球流程圖............................... 15 圖2-13 Cong等人使用CTAB-EB系統合成ZnO中空球流程圖..................... 16 圖2-14 Li等人使用氣體模板合成ZnO中空球流程圖.................................... 16 圖2-15 Li等人使用氣體模板合成ZnO中空球之SEM影像........................... 16 圖2-16 Zhou等使用鏈球菌作為生物模板合成ZnO中空球之流程圖........... 17 圖2-17 Zhou等使用鏈球菌作為生物模板合成ZnO中空球SEM與TEM影像........17 圖2-18 Umar等使用熱蒸鍍法合成ZnO中空球流程圖................................... 18 圖2-19 Liu等人以Kirkendall法合成ZnO中空球流程圖................................ 19 圖2-20 Liu等人以Kirkendall合成中空球之SEM影像................................... 19 圖3-1 製備氧化鋅中空球實驗流程圖..................30 圖3-2 製備Pt-Fe2O3複合殼層中空球實驗流程圖..................................32 圖3-3 超高週波加熱器........................33 圖4-1 改質後有機模板之全能譜圖..................37 圖4-2 改質後有機模板之Zn2p特徵能譜圖................................................... 37 圖4-3 改質後有機模板之O1s特徵能譜圖..................................................... 38 圖4-4 改質後有機微球模板內部Zn與O元素之縱深分佈曲線圖............... 38 圖4-5 前驅物於有機微球模板之不同深度偵測示意圖(a)植入式(b)披覆式 39 圖4-6 改變反應溫度於改質前後未鍛燒有機微球之FTIR圖譜................... 40 圖4-7 固定反應溫度75oC,改質前後未鍛燒有機微球模板的FTIR圖譜... 42 圖4-8 前驅物與四氯乙烯進行有機模板改質反應機制流程圖..................... 42 圖4-9 將反應溫度75oC改質後之有機微球鍛燒至不同溫度FTIR圖.......... 43 圖4-10 改質後有機微球模板以升溫速率10oC/min加熱至600oC之TG/DTA結果......................... 44 圖4-11 改質後有機微球與經不同溫度鍛燒2小時之SEM照片(a)75oC下改質後未鍛燒(b)400oC (c)450oC (d)550oC (e)700oC................................ 47 圖4-12 改質後有機模板於不同鍛燒溫度下殼層形成示意圖......................... 48 圖4-13 鍛燒至550oC持溫2小時TEM照片放大倍率20000X...................... 49 圖4-14 鍛燒至450oC持溫2小時TEM照片放大倍率50000X...................... 49 圖4-15 鍛燒持溫2小時之氧化鋅中空球SAD結果(a)450oC(b)550oC........... 49 圖4-16 ICP-MS分析改變不同Pt前驅物合成量,初始合成量和改質有機微球模板上Fe/Pt莫耳比.......................................................................51 圖4-17 Pt-Fe2O3複合殼層中空球活性金屬Pt載量...........................51 圖4-18 固定氯化鐵含量為0.2g時,改變Pt前驅物反應濃度,將反應後改 質有機模板鍛燒至500oC持溫2小時之SEM顯微觀察。(a)和(b) 為Pt前驅物0.2g,(c)和(d)為Pt前驅物0.05g,(e)和(f)為Pt前驅 物0.002g..................................53 圖4-19 固定氯化鐵含量為0.2g時,改變Pt前驅物反應濃度,將反應後改 質有機模板鍛燒至500oC持溫2小時之TEM顯微觀察。(a)明視野 (b)暗視野為Pt前驅物0.2g(c)明視野(d)暗視野為Pt前驅物0.05g, (e)明視野(f)暗視野為Pt前驅物0.002g................................................ 54 圖4-20 Pt前驅物0.05g合成,鍛燒500oC持溫2小時之Pt-Fe2O3複合殼 層中空球SAD結果.............55 圖4-21 改變鍛燒溫度對以Pt前驅物0.2g合成之Pt/Fe2O3複合殼層中空球XRD圖.................................................................................................... 56 圖4-22 改變Pt前驅物濃度,將鍛燒500oC持溫2小時之Pt-Fe2O3複合殼層中空球XRD圖................................................................................... 56 圖4-23 不同Pt前驅物合成濃度之拉曼圖譜.................................................... 58 圖4-24 Pt前驅物合成濃度改變相對應FWHM變化圖................................... 58 圖4-25 改變不同Pt前驅物合成濃度(0.2, 0.05, 0.002g),鍛燒後所得複合殼層中空球之吸脫附曲線圖..................................................................... 59 圖4-26 改變不同Pt前驅物合成濃度0.2, 0.05, 0.002g,鍛燒後所得複合殼層中空球之孔徑分佈曲線圖..................................................................... 60 圖4-27 改變不同Pt前驅物合成濃度0.2, 0.05, 0.002g,鍛燒後所得複合殼層中空球之BET比表面積圖..................................................................... 60 圖4-28 不同樣品熱試驗溫度上升曲線..............61 圖4-29 各樣品初始溫度上升斜率計算結果..........62 圖4-30 Ye等人研究磁性中空球於磁場轉換飽和磁化過程示意圖(a) vortex state(b) onion state(c) 飽和磁化............................................................ 62 表目錄 表2-1 不同模板類型合成中空球之優缺點比較表......................................... 5 表2-2 合成氧化鋅中空球重要文獻回顧表..................................................... 20 表2-3 整理表2-2文獻合成氧化鋅中空球之優缺點比較表........................... 26 表4-1 FTIR圖譜不同波數之官能基........................41 表4-2 固定反應溫度75oC,於未鍛燒改質機微球模板特定官能基影響.... 42 表4-3 ICP-MS進行改質有機微球上Fe,Pt元素定量分析偵測結果.......... 50 表4-4 不同Pt前驅物合成量,拉曼波長及其對應α-Fe2O3結構屬性關係圖.............................57 表4-5 各樣品的SAR值........................62zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.subjectzinc oxideen_US
dc.subject氧化鋅zh_TW
dc.subjectiron oxideen_US
dc.subjectplatinumen_US
dc.subjecthollow sphereen_US
dc.subject氧化鐵zh_TW
dc.subject白金zh_TW
dc.subject空心球zh_TW
dc.title前驅物植入方式合成中空ZnO暨中空Pt-Fe2O3複合殼層微球之研究zh_TW
dc.titleSynthesis of ZnO and Pt-Fe2O3 composite particles with hollow interiors by precursors implantationen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.