Please use this identifier to cite or link to this item:
標題: 以物理氣相沉積法通入空氣做為反應性氣體製備氮氧化鉻薄膜
Preparation of chromium oxynitride thin films by physical vapor deposition using air as a reactive gas
作者: 謝冠勳
Shie, Guan-Shyun
關鍵字: PVD;物理氣相沉積法;air;high base pressure;chromium oxynitride;空氣;高背景壓力;氮氧化鉻
出版社: 材料科學與工程學系所
引用: [1] J. Jagielski, A. S. Khanna, J. Kucinski, D. S. Mishra, P. Racolta, P. Sioshansi, E. Tobin, J. Thereska, V. Uglov, T. Vilaithong, J. Viviente, S. Z. Yang, A. Zalar, ‘‘Effect of chromium nitride coating on the corrosion and wear resistance of stainless steel,’’ Appl. Surf. Sci., 156 (2000) 47-64. [2] E. Huber, S. Hofmann, ‘‘Oxidation behaviour of chromium-based nitride coatings,’’ Surf. Coat. Technol., 68-69 (1994) 64-69. [3] P. F. Carcia, R. H. French, M. H. Reilly, M. F. Lemon, D. J. Jones, ‘‘Optical superlattices—a strategy for designing phase-shift masks for photolithography at 248 and 193 nm: Application to AlN/CrN,’’ Appl. Phys. Lett., 70 (1977) 2371. [4] F. Vaz, P. Cerqueiraa, L. Reboutaa, S. M. C. Nascimentoa, E. Alvesb, Ph. Goudeauc, J.P. Rivie`rec, ‘‘Preparation of magnetron sputtered TiNxOy thin films,’’ Surf. Coat. Technol., 174 -175 (2003) 197-203. [5] W. Y. Ho, C. H. Hsu, D. H. Huang, Y. P. Cheng. Y. C. Lin, C. L. Chang, ‘‘Oxygen effect on the mechanical behaviors of Cr(N,O)/CrN double-layered coatings by cathodic arc evaporation,’’ Surf. Coat. Technol., 188-189 (2004) 129-134. [6] T. B. Massalski, H. Okamoto, P. R. Subramanian, L.K. Kacprzak, Binary Alloy Phase, Materials Park, Ohio, 1990 p1293, 2705. [7] C. Nouveaua, M. A. Djouadia, O. Banakhb, R. Sanjine´s, F. Le´vy, ‘‘Stress and structure profiles for chromium nitride coatings deposited by r.f. magnetron sputtering,’’ Thin Solid Films, 398-399 (2001) 490-495. [8] B. Navinšek, P. Panjan, I. Milošev, ‘‘Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures,’’ Surf. Coat. Technol., 97 (1997) 182-191. [9] C. Nouveau, M. A. Djouadi, C. Decès-Petit, P. Beer, M. Lambertin, ‘‘Influence of CrxNy coatings deposited by magnetron sputtering on tool service life in wood processing,’’ Surf. Coat. Technol., 142-144 (2001) 94-101. [10] P. Hones, M. Diserens, F. Le´vy, ‘‘Characterixation of sputter-deposited chromium oxide thin films,’’ Surf. Coat. Technol., 120-121 (1999) 277-283. [11] 楊浚揮,以物理氣相沉積法通入空氣/氬氣製備TiN薄膜,國立中興大學材料科學工程學研究所碩士論文,2007年。 [12] 吳柏倫,在物理氣相沉積法中以空氣做為反應性氣體製備ZrN薄膜,國立中興大學材料科學工程學研究所碩士論文,2008年。 [13] C. Gautier, J. Machet, ‘‘Study and elaboration of ternary chromium based compounds (Cr, O, N) deposited by vacuum arc evaporation,’’ Surf. Coat. Technol., 94-95 (1997) 422-427. [14] St. Collard, H. Kupfer, G. Hecht, W. Hoyer, H. Moussaoui, ‘‘ The reactive magnetron deposition of CrNxOy films: first results of property investigations,’’ Surf. Coat. Technol., 112 (1999) 181-184. [15] S. Agouram, F. Bodart, G. Terwagne, ‘‘Characterisation of reactive unbalanced magnetron sputtered chromium oxynitride thin films with air,’’ Surf. Coat. Technol., 180-181 (2004) 164-168. [16] T. Savisalo, D. B. Lewis, P. Eh. Hovsepian, ‘‘Microstructure and properties of novel wear and corrosion resistant CrON/NbON nano-scale multilayer coatings,’’ Surf. Coat. Technol., 200 (2006) 2731-2737. [17] P. Wilhartitz, S. Dreer, P. Ramminger, ‘‘Can oxygen stabilize chromium nitride? – Characterization of high temperature cycled chromium oxynitride,’’ Thin Solid Films, 447-478 (2004) 289-295. [18] T. Suzuki, J. Inoue, H. Saito, M. Hirai, H. Suematsu, W. Jiang, K. Yatsui, ‘‘Influence of oxygen content on structure and hardness of Cr-N-O thin films prepared by pulsed laser deposition,’’ Thin Solid Films, 515 (2006) 2161-2166. [19] L. Cataldi, D. Kurapov, A. Reiter, V. Shklover, P. Schwaller, J. Patscheider, ‘‘Effect of the oxygen content on the structure, morphology and oxidation resistance of Cr-O-N coatings,’’ Surf. Coat. Technol., 203 (2008) 545-549. [20] R. Mientus, R. Grötschel, K. Ellmer, ‘‘Optical and electronic properties of CrOxNy films, deposited by reactive DC magnetron sputtering in Ar/N2/O2(N2O) atmospheres,’’ Surf. Coat. Technol., 200 (2005) 341-345. [21] X. M. He, N. Baker, B. A. Kehler, K. C. Walter, M. Nastasi, Y. Nakamura, ‘‘Structure, hardness, and tribological properties of reactive magnetron sputtered chromium nitride films,’’ J. Vac. Sci. Technol. A , 18 (2000) 30-36. [22] G. Wei, A. Rara, J. A. Barnard. ‘‘Composition, structure, and nanomechanical properties of DC-sputtered CrNx (0≦x≦1) thin films,’’ Thin Solid Films, 398-399 (2001) 460-464. [23] A. Barata, L. Cunha, C. Moura, ‘‘Characterisation of chromium nitride films produced by PVD techniques,’’ Thin Solid Films, 398-399 (2001) 501-506. [24] E. Martinez, R. Sanjinés, O. Banakh, F. Lévy, ‘‘Electrical, optical and mechanical properties of sputtered CrNy and Cr1-xSixN1.02 thin films,’’ Thin Solid Films, 447 –448 (2004) 332–336. [25] Z. G. Zhang, O. Rapaud, N. Bonasso, D. Mercs, C. Dong, C. Coddet, ‘‘Control of microstructure and properties of dc magnetron sputtering deposited chromium nitride films,’’ Vacuum, 82 (2008) 501-509. [26] G. A. Zhang, P. X. Yan, P. Wang, Y. M. Chen, J. Y. Zhang, ‘‘Influence of nitrogen content on the structural, electrical and mechanical properties of CrNx thin films,’’ Mater. Sci. Eng. A, 460-461 (2007) 301-305. [27] P. H. Mayrhofer, G. Tischler, C. Mitterer, ‘‘Microstructure and mechanical/thermal properties of Cr-N coatings deposited by reactive unbalanced magnetron sputtering,’’ Surf. Coat. Technol., 142-144 (2001) 78-84. [28] K. Reichelt, X. Jiang, ‘‘The preparation of thin films by physical vapor deposition methods,’’ Thin Solid Films, 191 (1990) 91. [29] W. R. Grove, ‘‘On the Electro-Chemical Polarity of Gases,’’ Philos. Trans. R. Soc. London, 142 (1852) 87-101. [30] B. Window, N. Savvides, ‘‘Charged particle fluxes from plamar magnetron sputtering source,’’ J. Vac. Sci. Technol. A, 11 (1993) 1522. [31] M. Ohring, The Material Science of Thin Films, Chapter 5, Academic Press, San Diego, 1992. [32] J. A. Thornon, ‘‘Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,’’ J. Vac. Sci. Technol., 11 (1974) 671. [33] G. G. Stoney, ‘‘The transition of metallic films deposited by electrolysis,’’ Proc. R. Soc. Lond. Ser. A, 82 (1909) 172. [34] W. A. Brantley, ‘‘Calculated elastic constants for stress problems associated with semiconductor devices,’’ J. Appl. Phys., 44 (1973) 534. [35] M. A. White, Properties of Materials, Oxford, New York, 1999 p33. [36] C. Meunier, S. Vives, G. Bertrand, ‘‘X-ray diffractometry analysis of r.f.-magnetron-sputtered chromium/chromium nitride coatings,’’ Surf. Coat. Technol., 107 (1998) 149-158. [37] B. D. Cullity, S. R. Stock, Elements of X-ray Diffraction, 3rd ed., Prentice-Hall, New York, 2001 p170. [38] J. H. Xu, H. Umehara, I. Kojima, ‘‘Effect of deposition parameters on composition, structures, density and topography of CrN films deposited by r.f. magnetron sputtering,’’ Appl. Surf. Sci., 201 (2002) 208-218. [39] J. F. Watts, J. Wolstenholme, An introduction to surface analysis by XPS and AES, J. Wiley, New York, (2003) p76. [40] M. Urgen, V. Ezirmik, E. Senel, Z. Kahraman, K. Kazmanli, ‘‘The effect of oxygen content on the temperature dependent rtibological behavior of Cr-O-N coatings,’’ Surf. Coat. Technol., (2009) article in press. [41] J. Lin, Z. L. Wu, X. H. Zhang, B. Mishra, J. J. Moore, W. D. Sproul, ‘‘A comparative study of CrNx coatings Synthesized by dc and pulsed dc magnetron sputtering,’’ Thin Solid Films, 517 (2009) 1887-1894. [42] J. W. Lee, Y. C. Kuo, C. J. Wang, L. C. Chang, ‘‘Effect of substrate bias frequencies on the characteristics of Chromium nitride coatings deposited by pulsed DC reactive magnetron sputtering,’’ Surf. Coat. Technol., 203 (2008) 721-725. [43] H. C. Barshilia, N. Selvakumar, B. Deepthi, K. S. Rajam, ‘‘A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings,’’ Surf. Coat. Technol., 201 (2006) 2193-2201. [44] P. Hones, N. Martin, M. Regula, F. Lévy, ‘‘Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films,’’ J. Phys. D: Appl. Phys., 36 (2003) 1023-1029. [45] M. A. Djouadi, C. Nouveau, O. Banakh, R. Sanjinés, F. Lévy, G. Nouet, ‘‘Stress profiles and thermal stability of CrxNy films deposited by magnetron sputtering,’’ Surf. Coat. Technol., 151-152 (2002) 510-514. [46] T. Hurkmans, D. B. Lewis, H. Paritong, J. S. Brooks, W. D. Münz, ‘‘Influence of ion bombardment on structure and properties of unbalanced magnetron grown CrNx coatings,’’ Surf. Coat. Technol., 114 (1999) 52-59. [47] C. Gautier, J. Machet, ‘‘Study of the growth mechanisms of chromium nitride films deposited by vacuum ARC evaporation,’’ Thin Solid Films, 295 (1997) 43-52. [48] E. Ando, S. Suzuki, ‘‘Optical and mechanical properties of Cr and CrNx films by dc magnetron sputtering,’’ J. Non-Cryst. Solids, 218 (1997) 68-73. [49] H. Y. Chen, S. Han, H. C. Shih, ‘‘Microstructures and properties changes induced by a metal vapor vacuum arc chromium interlayer in chromium nitride films,’’ Mater. Lett., 58 (2004) 2924– 2926. [50] E. J. Markel, M. E. LeaphartⅡ, Nitrides, in Encyclopedia of Chemical Technology, edited by M. H. Grant, 4th ed., John Wiley and Sons, New York, 1996, Vol. 19, p112. [51] I. Barin, G. Platzki, Thermochemical Data of Pure Substance, 3rd ed., Edited Vol. 2, VCH, New York, 1995, p 567-573. [52] M. A. Signore, A. Rizzo, L. Mirenghi, M. A. Tagliente, A. Cappello, ‘‘Characterization of zirconium oxynitride films obtained by ratio frequency magnetron reactive sputtering,’’ Thin Solid Film, 515 (2007) 6798. [53] S. Inamura, K. Nobugal, F. Kanamaru, ‘‘The preparation of NaCl-type Ti-Al-N solid solution,’’ J. Solid State Chem., 68 (1987) 124. [54] E. Clementi, D. L. Raimondi, W. P. Reinhardt, ‘‘Atomic Screening Constants from SCF Functions,’’ J. Chem. Phys., 38 (1963) 2686. [55] D. R. Askeland, P. Webster, The Science and Engineering of Materials, 4th ed., Chapman & Hall, London, 1990, p800.
過去文獻利用物理氣相沉積法 (Phsical Vapor Deposition, PVD) 製備CrNxOy薄膜時,都會將腔體抽至低的背景壓力(高真空),避免殘存的空氣對薄膜造成影響,在抽除腔體氣體時,通常需耗費長時間使製程成本提高,近年來,全球經濟衰退,環保議題也備受重視,本研究希望在高背景壓力下(1.3×10-2 Pa)通入空氣反應性氣體以製備出CrNxOy薄膜,藉此縮短製程抽真空所需耗費的時間,達到節能環保、降低製程與原料成本的目的。

本研究主要利用PVD在不同背景壓力下(1.3×10-2 Pa、6.6×10-4 Pa)以空氣作為反應性氣體製備CrNxOy薄膜,控制air/Ar流量比值在(0~46)/100,鍍著功率200 W、偏壓-50 V、工作壓力0.19~0.20 Pa、鍍著時間20 min下所鍍著之薄膜,分別以X光繞射儀 (XRD) 分析所鍍著薄膜之結晶結構,以場發射掃描式電子顯微鏡 (FE-SEM) 觀察薄膜微結構,以歐傑電子能譜儀 (AES) 及X光光電子能譜儀 (XPS) 進行薄膜深縱分析及成分分析,以四點探針 (Four point probe) 量測薄膜導電性,以奈米壓痕儀 (nano-indenter) 量測薄膜硬度,以雷射曲率法 (Scanning laser curvature)量測薄膜殘留應力,最後綜合各儀器分析結果歸納出CrNxOy薄膜的性質。在高背景壓力(1.3×10-2 Pa)下,所製備之薄膜在air/Ar流量比值30~33/100時,薄膜晶體結構為岩鹽結構,橫截面為柱狀晶結構,氧含量約 17~22 at.%,電阻率588~ 1.33×104 μΩ-cm、硬度值29~30 GPa,與文獻比較後,發現所得為CrNxOy薄膜。接著本研究比對不同背景壓力對所鍍著薄膜的影響,發現在高背景壓力下能鍍著出與在低背景壓力品質相近的薄膜;而本研究實驗設備抽至高低背景壓力所需抽氣時間差接近10倍,因此本研究所鍍著之CrNxOy薄膜能大幅地省去抽真空的時間,達到環保與降低製程成本的目的。

本研究之結果顯示,當薄膜中含有17~22 at.%的氧時薄膜仍維持岩鹽結構,而XRD分析薄膜中無氧化物的繞射峰,是因為薄膜中氧原子數目不足以形成穩定相氧化物。當薄膜結構為岩鹽結構時,薄膜電阻率、硬度的變化主要受氧原子固溶的影響。

It has been reported that preparation of chromium oxynitride (CrNxOy) thin films by physical vapor deposition (PVD) often requires the vacuum environment to achieve low base pressures and to avoid the influence of residual air. It usually takes much time to achieve a low base pressure and hence increases the processing cost. In the recent years, global economic recession and environment problems cause many concerns. The main purpose of this study is to prepare CrNxOy thin films at high base pressures using air as a reactive gas, which could achieve energy saving and cost reduction.

CrNxOy thin films prepared by PVD using air as a reactive gas at different base pressures (1.3×10-2 Pa、6.6×10-4 Pa) were investigated. The sputtering power was 200 W, the bias voltage was kept at -50 V, the deposition time was 20 mins, and the flow ratio of the air/Ar was varied in the range of (0~46)/100. The crystal structure of CrNxOy films was identified by X-ary diffraction. The morphology and the thickness of CrNxOy films were observed using a field-emission scanning electron microscopy. The chemical composition of the films was determined by X-ray photoelectron spectroscopy and Auger electron spectroscopy. Resistivities of the films were measured using four-point probe. The hardness of the films was measured using a nano-indenter. The residual stress of films was measured by scanning laser curvature. At high base pressure (1.3×10-2 Pa), as the flow ratio of air/Ar was controlled about (30~33)/100, the crystal structure of films were rock-salt structure. The films were columnar structure. The oxygen contant was 10~20 at%. The resistivities ranged from 588~1.33×104 μΩ-cm and the hardness ranged from 29~30 GPa. After comparing with the data reported in the literature, it has been confirmed that our study successfully prepared CrNxOy films at high base pressures. The properties of CrNxOy films prepared at high and low base pressures were similar. However, the pumping times at high and low base pressures were about ten times different. Thus, the processing time would be greatly reduced by using this process.

The results showed that CrNxOy films exhibited a rock-salt structure with oxygen concentration of 17~22 at%. The XRD results do not show any oxide phases, because oxygen atoms were not sufficient to form stable chromium oxide phases. The resistivities and hardness of the films were affected by the dissolution of oxygen atoms in the films as the films maintained a rock-salt structure.
Appears in Collections:材料科學與工程學系

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.