Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10684
標題: 鎂合金廢料/不鏽鋼網耦片在不同濃度氯化鈉溶液中的產氫反應及伽凡尼腐蝕行為之研究
H2 generation and galvanic corrosion behavior of metallic couples of Mg scrap and stainless steel net in aqueous solutions with different NaCl concentrations
作者: 陳力凡
Chen, Li-Fan
關鍵字: Hydrogen generation;氫氣;Magnesium scraps;Stainless steel;Corrosion;鎂合金廢料;不銹鋼;伽凡尼腐蝕
出版社: 材料科學與工程學系所
引用: 1. C.J. Winter, Int J Hydrogen Energy, 30 (2005) 1371-1374. 2. S. Dunn, Int J Hydrogen Energy, 27 (2002) 235-264. 3. A.B. Stambouli and E. Traversa, Renew Sust Energ Rev, 6 (2002) 433-455. 4. B.C.H. Steele and A. Heinzel, Nature, 414 (2001) 345-452. 5. J.J. Romm, in: The hype about hydrogen: fact and fiction in the race to save the climate (Island Press, Washington, DC, 2005) p. 67. 6. M.L. Wald, Sci Am, 290 (2004) 66-73. 7. S.P. Cicconardi, A. Perna, G. Spazzafumo , and F. Tunzio, Int J Hydrogen Energy, 31 (2006) 693-700. 8. J.M. Ogden, in: The hydrogen energy transition: moving toward the post-petroleum age in transportation (Elsevier, Boston, MA, 2004) p. 73-92. 9. L.F. Brown, Int J Hydrogen Energy, 26 (2001) 381-397. 10. M.L. Wald, Sci Am, 290 (2004) 66-73. 11. S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, N.C. Spencer, M.T. Kelly, P.J. Petillo , and M. Binder, Int J Hydrogen Energy, 25 (2000) 969-975. 12. U.B. Demirci, O. Akdim and P. Miele, Int J Hydrogen Energy, 34 (2009) 2638-2645 13. L. Soler., J. Macanás, M. Muñoz, and J. Casado, Int J Hydrogen Energy, 32 (2007) 4702-4710. 14. Z.P. Li, B.H. Liu, J.K. Zhu, N. Morigasaki , and S. Suda, J Alloy Comp, 437 (2007) 311-316. 15. L. Soler, J. Macanás, M. Muñoz, and J. Casado, J Power Sources, 169 (2007) 144-149. 16. T. Hiraki, M. Takeuchi, M. Hisa , and T. Akiyama, Mater Trans, 46 (2005) 1052-1057. 17. M.H. Grosjean, M. Zidoune, J.Y. Huot and L. Roué, Int J Hydrogen Energy, 31 (2006) 1159-1163. 18. M.H. Grosjean, M. Zidoune, L. Roué and J.Y. Huot, Int J Hydrogen Energy, 31 (2006) 109-119. 19. S.S. Sergev ,and S.A. Black, Proceedings of the 12th intersociety energy conversion engineering conference, Washington, D. C., 1 (1977) 973-980. 20. S.S. Martínez, L.A. Sánchez, A.A.Á. Gallegos, and P.J. Sebastian, Int J Hydrogen Energy, 32 (2007) 3159-3162. 21. S.S. Martínez, W.L. Benítes, A.A.Á. Gallegos, and P.J. Sebastián, Sol Energy Mater Sol Cells, 88 (2005) 237-243. 22. Hikmet Altun, Sadri Sen, Materials & Design, 25 (2004) 637-643. 23. A. A. Luo, JOM, 54 (2002) 42-48. 24. B. L. Mordike and T. Ebert, Mater. Sci. Eng. A, 302 (2001) 37-45. 25. H. Furuya, N. Kogiso, S. Matunaga, K. Senda, Mater. Sci. Forum, 350 (2000) 341-348. 26. G. Hanko, H. Antrekowitsch and P. Ebner. J Minerals, Metals and Materials, 54 (2002) 51-54. 27. U.M.J. Boin, Wide open gap of magnesium recycling. Metall. 55(5) (2001) 283-286. 28. G. Song, B. Jonhannesson, S. Hapugoda and D.H. StJohn, Corros. Sci., 46 (2004), 955-977. 29. H. Bommer, in “Magnesium alloys and their applications”, edited by B.L. Mordike and K.U. Kainer, Werkstoff-Informationsgesellschaft mbH, Germany (1998), 79-90. 30. H.P. Godard, W.B. Jepson, M.R. Bothwell and R.L. Kane, “The Corrosion of Light Metals”, John & Son, New York (1967), p.267. 31. G.L. Makar and J. Kruger, J. Electrochem. Soc., 137 (1990), 414-421. 32. G. Song and A. Atrens, Adv. Eng. Mater., 5 (2003), 837-858. 33. O. Lunder, J.H. Nordlien and K. Nisancioglu, Corros. Rev., 15 (1997) 439-469. 34. G. Song, Adv. Eng. Mater., 7 (2005), 563-586. 35. R. S. Busk, “Magnesium products design”, Marcel Dekker Inc., New York (1987), p. 519. 36. G. Song and A. Atrens, Adv. Eng. Mater., 1 (1999), 11-33. 37. C.Y. Cho, K.H. Wang, and J.Y. Uan, Mater Trans, 46 (2005) 2704-2708. 38. J.Y. Uan, C.Y. Cho, and K.T. Liu, Int J Hydrogen Energy, 32 (2007) 2337-2343. 39. I.A. Taub, W. Roberts, S. LaGambina, and K. Kustin, J Phys Chem A, 106 (2002) 8070-8078. 40. ASTM B93/B93M 07, Standard specification for magnesium alloys in ingot form for sand castings, permanent mold castings, and die castings, American Society of Testing Materials, Philadelphia, Pennsylvania, 2007. 41. M. Pourbaix, “Atlas of Electrochemical Equilibrium in Aqueous Solution ”, 2nd edition, National Association of Corrosion Engineers, Texas, (1974), p.139-145. 42. R. Ambat, N.N. Aung and W. Zhou, J. Appl. Electrochem., 30 (2000), 865-874. 43. W.M. Chan, F.T. Cheng, L.K. Leung, R.J. Horylev and T.M. Yue, Corrosion Review, 16 (1998), 43-52. 44. H. Altun and S. Sen , Mater. Des., 25 (2004), 637-643. 45. O. Lunder, J.E. Lein, T.Kr. Aune and K. Nisancioglu, Corrosion, 45 (1989), 741-748. 46. 卓錡淵,”鎂合金廢料再生為氫氣能源及其生命週期評估之研究”,國立中興大學材料科學與工程研究所博士論文(2007) 47. 柯賢文,“腐蝕與其防制”,全華科技圖書,台北,1994。 48. I. Nakatsugawa, H. Takayasu, K. Araki and T. Tsukeda, Mater. Sci. Forum, 419-422 (2003), 845-850. 49. G. Bearman, Ocean chemistry and deep-sea sediments. Sydney, Australia: Pergamon; 1989.
摘要: 
由於國際燃料價格上揚,隨著輕量化的優勢,鎂合金所製成的零組件已逐漸運用於交通運輸工具。此外3C電子產品的結構、外殼等零組件亦大量使用鎂合金製品。可以預料鎂合金廢棄物(LGMS)將會日益增加。本研究利用不易回收再利用之LGMS與AISI 304不銹鋼網耦合的伽凡尼腐蝕行為,做為製造氫氣的方法。將LGMS熔融呈半固態後,沾附在AISI 304不銹鋼網上製成產氫耦片,並將產氫耦片置於NaCl水溶液中以產生氫氣。隨著NaCl溶液濃度提高(3.5 ~ 22 wt.%),或NaCl溶液體積增大,產氫總量也越多;且將耦片分散懸吊於溶液中,也有助於產氫效率的提升。為了降低產氫成本將不銹鋼網重複使用,但不銹鋼在沾黏LGMS的溫度下受熱而敏化、腐蝕電位降低,會導致產氫效率的下降。將LGMS與AISI 304不銹鋼在濃度越高的NaCl溶液中以銅導線耦合,以ZRA量測到的伽凡尼電流也越高。此外,提高LGMS(陽極)與AISI 304不銹鋼(陰極)耦合的陰陽極面積比,伽凡尼電流也隨之增加。另外,利用單面沾黏LGMS產氫耦片在氯化鈉水溶液中反應的產氫裝置,可以成功質子交換膜燃料電池組產生電力。

This work converted low-grade Mg scrap (LGMS) into hydrogen in aqueous NaCl. LGMS bath at 600 oC in a semi-solid state was prepared. AISI 304 stainless steel (S.S.) net was used as a metallic catalyst. The net was deformed into a wave-like shape. The wave-like S.S. nets were dipped into the semi-solid bath to form LGMS/S.S. couples. The generated hydrogen volume from the reaction of the couple in aqueous NaCl would increase with increasing the NaCl concentration from 3.5 wt.% to 22 wt.%. The couple that reacted in 3.5 liters NaCl solution produced more hydrogen than that did in 1.5 liters NaCl solution. A new H2-on-demand system mainly containing aqueous NaCl, LGMS/S.S. was employed for the first time in practice to generate electricity by proton exchange membrane fuel cell (PEMFC). The electric power produced by the PEMFC drove a motor fan and illuminated a high-power LED lamp, respectively.
URI: http://hdl.handle.net/11455/10684
Appears in Collections:材料科學與工程學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.