Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorChao, Ling-Suen_US
dc.identifier.citation[1] B.H. Lee, Y.D. Kim, J.H. Shin, and K.H. Lee, “Surface modification by alkali and heat treatments in titanium alloys,” J. Biomed. Mater. Res. A, 61 (2002) 466. [2] X. Sun, and Y. Li, “Synthesis and characterization of ion-exchangeable titanate nanotubes,” Chem. Eur. J., 9 (2003) 2229. [3] K.R. Zhu, Y. Yuan, M.S. Zhang, J.M. Hong, Y. Deng, and Z. Yin, “Structural transformation from NaHTi3O7 nanotube to Na2Ti6O13 nanorod,” Solid State Commun., 144 (2007) 450. [4] Y.C. Chieh, C.C. Yu, and F.H. Lu, “Epitaxial growth of BaTiO3 films on TiN/Si substrates by a hydrothermal-galvanic couple method,” Appl. Phys. Lett., 90 (2007) 032904. [5]余錦智,“以低溫水熱法及化學電池作用於氮化鈦膜上製備鈦酸鋇之研究”,國立中興大學材料工程所碩士論文,2005年。 [6] H.P. Teng, Y.C. Chieh, and F. H. Lu, “Preparation of BaZrO3 films by physical vapor deposition and a novel hydrothermal duplex technique,” Thin Solid Films, 516 (2007) 364. [7]鄧煥平,“以低溫水熱-化學電池法於鍍氮化鋯矽基材上製備鋯酸鋇膜之研究”,國立中興大學材料工程所碩士論文,2007年。 [8] K.M. Jindo, S.R. Nishitani, V.V. Hung, “hcp-bcc structural phase transformation of titanium: Analytic model calculations,” Physical review B 70 (2004) 184122. [9] H.M. Kim, F. Miyaji, T. Kokubo, and T. Nakamura, “Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment,” J. Mater. Sci.:Mater. Med., 8 (1997) 341. [10] T. Kokubo, and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?” Biomaterials, 27 (2006) 2907. [11] K. Hayasho, T. Mashima, and K. Uenoyama, “The effect of hydroxyapatite coating on bony ingrowth into grooved titanium implants,” Biomaterials, 20 (1999) 111. [12] K. Haysashi, T. Mashima, and K. Uenoyama, “The effect of hydroxyapatite coating on bony ingrowth into grooved titanium implants,” Biomaterials, 20 (1999) 111. [13] J.J. Callaghan, “Current concepts review:The clinical resylts and basic science of total hip arthoplasty with porous-coated prostheses,” J. Bone Joint Surg., 75A (1993) 229. [14]陳文正,“氫氧基磷灰石複合骨水泥基本性質及植入結果研究”,國立成功大學材料科學與工程學系博士論文,2002年。 [15] M.A.M. Ibrahim, D. Pongkao, and M. Yoshimura, “The electrochemical behavior and characterization of the anodic oxide film formed on titanium in NaOH solutions,” J. Solid State Electrochem., 6 (2001) 341. [16] A. Prusi, L.Arsov, B. Haran, and B.N. Popov, “Anodic behavior of Ti in KOH solution,” J. Electrochem. Soc B., 149 (2002) 491. [17] T. Sonoda, and M. Kato, “Topographic fidelity of Ti-O filmdeposited onto Ti-6Al-4V alloy substrate to its surface by reactive DC sputtering,” Mater. Res. Bull., 32 (1997) 1419. [18] X. Zheng, M. Huang, and C. Ding, “Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings,” Biomaterials, 21 (2000) 841. [19] Huang N, Yang P, and Cheng X, “Blood compatibility of amorphous titanium oxide films synthesized by ion beamenhanced deposition,” Biomaterials, 19 (1998) 771. [20]呂嘉俊,“以水熱法成長二氧化鈦奈米線之研究”,國立功大學化學工程研究所 碩士論文, 2006. [21]呂宗昕,吳偉宏,“奈米科技與二氧化鈦光觸媒”,科學發展,2004年4月,376期,72-77頁。 [22]鄭智文,“化學氣相沉積二氧化鈦薄膜及添加雜質效應”,國立成功大學材料科學(工程)研究所,1991,碩士論文。 [23]羅志緯,“於鈦/矽基材上成長含氮二氧化鈦薄膜及其作為光觸媒之材料及性質研究”,國立台灣科技大學化學工程系,2006,碩士論文。 [24] Y. Guo, N.H. Lee, H.J. Oh, C.R. Yoon, K.S. Park, W.H. Lee, Y. Li, H.G. Lee, K.S. Lee, and S.J. Kim, “Preparation of titanate nanotube thin film using hydrothermal method,” Thin solid films, 516 (2008) 8363. [25] P. Ducheyne, W. Van Raemdonck, J.C. Heughebaert, and M. Heughebaert, “Structural analysis of hydroxyapatite coatings on titanium,” Biomaterials, 7 (1986) 97. [26] H.M. Kim, F. Miyaji, T. Kokubo, and T. Nakanura, “Preparation of bioactive Ti and its alloys via simple chemical surface treatment,” J. Biomed. Mater. Res., 32 (1996) 409. [27] H. Takadama, H.M. Kim, T. Kokubo, and T. Nakamura, “An X-ray photoelectron spectroscopy study of the processof apatite formation on bioactive titanium metal,” J. Biomed. Mater. Res., 55 (2001) 185. [28] C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” J. Am. Ceram. Soc., 80 (1997) 3157. [29] F.T. Cheng, P. Shi, and H.C. Man, “A preliminary study of TiO2 deposition on NiTi by a hydrothermal method,” Surf. Coat. Technol., 187 (2004) 26. [30] Y.F. Su, Y.C. Weng, and T.C. Chou, “Templateless nanofiber photoelectrode prepared using mildhydrothermal conditions,” J. Electrochem. Soc., 155 (2008) 23. [31] L.D. Arsov, C. Kormann, and W. Plieth, “In situ raman spectra of anodically formed titanium dioxide layers in solutions of H2SO4, KOH, and HNO3,” J. Electrochem. Soc., 138 (1991) 2964. [32] Y.J. Kim, Y.H. Lee, M.H. Lee, H.J. Kim, J.H. P, G.I. Lim, Y.S. Choi, K. Kim, N. G. Park, C. Lee, and W.I. Lee, “Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of long-range ordered mesoporous TiO2 thin film,” Langmuir, 24 (2008) 13225. [33] C.L. Kao, Y.H. Hsieh, M.Y. Chang, C.H. Li, and C.C. Liu, “TiO2/Ti thin-film electrode manufacturing equipment and combined external circuit photoelectrical catalytic process for reducing silver ions,” Sep. Purif. Technol., 63 (2008) 546. [34]呂宗昕,“圖解奈米科技與光觸”,商周出版。 [35]田福助,“電化學-基本原理與應用”,第三章:可逆性電極之電位,五洲出版社,第53-55頁,民國八十三年。 [36] Gamble J. Chemical Anatomy. Physiology and pathology of extracellular fluid, Cambridge: Harvard University Press, (1967) 1. [37]汪建民,“材料分析”,中國材料科學學會,77-78頁。 [38] Y.T. Sul, C.B. Johansson, Y. Jeong, and T. Albrektsson, “The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes,” Med. Eng. Phys., 23 (2001) 329. [39] G.S. Kim, H.K. Seo, V.P. Godble, Y.S. Kim, O.B. Yang, and H.S. Shin, “Electrophoretic deporetic deposition of titanate nanotubes from commercial titania nanoparticles:Application to dye-sensitized solar cells,” Electrochem. Commun., 8 (2006) 961. [40] S. Zhang, W. Li, Z. Jin, J. Yang, J. Zhang, Z. Du, and Z. Zhang, “Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid,” J. Solid State Chem., 177 (2004) 1365. [41] M. Miyauchi, and H. Tokudome, “Low-reflective and super-hydropilic properties of titanate or titania nanotube thin film via layer-by-layer assembly,” Thin Solid Films, 515 (2006) 2091. [42] L.Q. Weng, S.H. Song, S. Hodgson, A. Baker, and J. Yu, “Synthesis and characterization of nanotubular titanates and titania,” J. Eur. Ceram. Soc., 26 (2006) 1405. [43] E. Morgado, Marco A.S. de Abreu, G. T. Moure, B.A. Marinkovic, P.M. Jardim, and A. S. Araujo, “Characterization of nanostructured titanates obtained by alkali treatment of TiO-anatases with distinct crystal sizes,” Chem. Mater., 19 (2007) 665. [44] K. Cai, M. Muller, J. Bossert, A. Rechtenbach, and K.D. Jandt, “Surface structure and composition of flat titanium thin films as a function of thin tnickness and evaporation rate,” Appl. Surf. Sci., 250 (2005) 252. [45] M.V. Kuznetsov, Ju.F. Ahuravlev, and V.A. Gulbanov, “XPS analysis of adsorption of oxygen molecules on the surface of Ti and TiNx films in vacuum,” J. Electron. Spectrosc. Related Phenom., 58 (1992) 169. [46] Bertoti, M. Mohai, J.L. Sullivan, and S.O. Saied, “Surface characterization of plasma-nitrided titanium:an XPS study,” Appl. Surf. Sci., 84 (1995) 357. [47] Y.T. Sul, C.B. Johansson, S. Petronis, A. Krozer, Y.Jeong, A. Wennerberg, and T. Albrektsson, “Caracteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition,” Biomaterials, 23 (2002) 491. [48] Z. Xia, H. Nanjo, H. Tetsuka, T. Ebina, M. Izumisawa, M. Fujimura, and J. Onagawa, “Crystallization of the anodic on titanium in sulphuric acids solution at a very low potential,” Electrochem. Commun., 9 (2007) 850. [49] J. Sun, Y. Han, and K.Cui, “Microstructure and apatite-forming ability of the MAO-treated porous titanium,” Surf. Coat. Technol., 202 (2008) 4248. [50] R.A. Zarate, S. Fuentes, A.L. Cabrera, and V.M. Fuenzalida, “Structural characterization of single crystals of sodium titanate nanowires prepared by hydrothermal process,” J. Cryst. Growth, 310 (2008) 3630. [51] H.K. Seo, G.S. Kim, S.G. Ansari, Y.S. Kim, H.S. Shin, K.H. Shim, and E.K. Sub, “A study on the structure/phase transformation of titanate nanotubes synthesized at various hydrothermal temperatures,” Sol. Energy Mater. Sol. Cells, 92 (2008) 1533. [52] R.A. Zarate, S. Fuentes, J.P. Wiff, V.M. Fuenzalida, and A.L. Cabrera, “Chemical composition and phase identification of sodium titanate nanostructures grown from titania by hydrothermal processing,” J. Phys. Chem. Solids, 68 (2007) 628. [53] G.S. Kim, S.G. Ansari, H.K. Seo, Y.S. Kim, and H.S. Shin, “Effect of annealing temperature on structural and bonded states of titanate nanotube films,” J. Appl. Phys., 101 (2007) 024314. [54] E. Benko, T.L. Barr, S. Hardcastle, E. Hoppe, A. Bernasik, and J. Morgiel, “XPS study of the cBN-TiC system,” Ceram. Int., 27 (2001) 637. [55] Y. Choi, S. Yamamoto, T. Umebayshi, and M. Yoshikawa, “Fabrication and characterization of anatase TiO2 thin film on glass substrate grown by pulsed laser deposition,” Solid State Ionics, 172 (2004) 105. [56] L. Zhang, R.V. Koka, “A study on the oxidation and carbon diffusion of TiC in alumina-titanium carbide ceramics using XPS and Raman spectroscopy,” Mater. Chem. Phys., 57 (1998) 23. [57] Z. Lin, K. Liu, T.C. Zhang, X.J. Yue, G.Q. Song, D.C. Ba, “The microstructure and wettability of the TiOx films synthesized by reactive DC magnetron sputtering,” Mater. Sci. Eng., B, 156 (2009) 79. [58] M. Schmiedgen, P.C.J. Graat, B. Baretzky, and E.J. Mittemeijer, “The initial stages of oxidation of γ-TiAl:an X-ray photoelectron study,” Thin Solid Films 415 (2002) 114. [59] A.R. Prusi, LJ.D. Arsov, “The growth kinetics and optical properties of films formed under open circuit conditions on a titanium surface in potassium hydroxide solutions,” Corro. Sci., 33 (1992) 153. [60] M. Wei, H. M. Kim, T. Kokubo, and J.H. Evans, “Optimising the bioactivity of alkaline-treated titanium alloy,” Mater. Sci. Eng. C, 20 (2002) 125. [61] D.V. Bavykin, J.M. Friedrich, A.A. Lapkin, and F.C. Walsh, “Stability of aqueous suspensions of titanate nanotubes,” Chem. Mater., 18 (2006) 1124. [62] Y. Guo, N.H. Lee, H.J. Oh, C.R. Yoon, K.S. Park, S.C. Jung, and S.J. Kim, “The growth of oriented titanate nanotube thin film on titanium metal flake,” Surf. Coat. Technol., 202 (2008) 5431. [63] M.A. Khan, R.L. Williams, and D.F. Williams, “In-vitro corrosion and wear of titanium alloys in the biological environment,” Biomaterials, 17 (1996) 2117. [64] T.V. Vijataraghavan, “Electrodeposition of apatite coating on pore titanium and titanium alloys,” J. Mater. Sci. Lett., 13 (1994) 1782. [65] T. Kokubo, H. M. Kim, and M. Kawashita, “Novel bioactive materials with different mechanical properties,” Biomaterials, 24 (2003) 2161. [66] G.B. Harris, “Quantitative measurement of preferred orientation in rolled uranium,” Phil. Mag., 43 (1952) 113. [67] Y.L. Jeyachandran, B. Karunagaran, S.K. Narayandass, D. Mangalaraj, “The effect of thickness on the properties of titanium films deposited by dc magnetron sputtering,” Mater. Sci. Eng. A, 458 (2007) 361.zh_TW
dc.description.abstract本研究主要是以新穎之水熱-化學電池法於低溫(<100°C)常壓下,在鈦膜矽晶片(Ti/Si)基材上製備具有生物活性之NaHTi3O7膜,目前文獻上尚未有以此方式或基材進行製備NaHTi3O7膜之研究之相關報導。實驗中是以氫氧化鈉(NaOH)為反應溶液,並改變NaOH濃度、反應溫度及時間來探討NaHTi3O7膜成長的影響。另外,亦使用水熱法作為對照組,與水熱-化學電池法結果進行比較。接著將所製備出NaHTi3O7膜浸泡於模擬人體體液(SBF)中,藉此評估其生物活性。 經由X光繞射(XRD)、拉曼光譜(Raman)及X光光電子能譜儀(XPS)分析結果確認,利用水熱-化學電池法及水熱法均可在Ti/Si基材上,在小於100°C的低溫環境下製備出NaHTi3O7膜。以場發射掃描式電子顯微鏡(FE-SEM)觀察試片反應前後橫截面及表面微結構形貌。在本研究中顯示利用Ti/Si以水熱-化學電池法和水熱法於4M NaOH溶液中,在80°C下反應2小時均可製備出非晶(少量結晶)NaHTi3O7膜,以水熱-化學電池法形成NaHTi3O7膜厚約350 nm,但以水熱法製備生成NaHTi3O7膜厚僅約200 nm,顯示水熱-化學電池法反應較為快速。在4M NaOH溶液中,當反應溫度於50-80°C時則形成非晶NaHTi3O7膜。而Ti/Si以水熱-學電池法於6M NaOH溶液中,在60°C下反應2小時即可生成非晶(少量結晶)NaHTi3O7膜。本實驗以水熱-化學電池法及水熱法所製備NaHTi3O7膜表面皆為奈米網狀結構,NaHTi3O7膜生成厚度及表面網狀孔洞尺寸皆隨NaOH濃度、水熱溫度及反應時間增加而增加。分析NaHTi3O7膜生成量與Ti基材消耗量之化學計量關係,發現實際膜厚較理論膜厚高出許多,可能是所生成之NaHTi3O7膜為奈米網狀結構,使密度大幅降低所致。綜合以上結果可得知水熱-化學電池製程反應速率比水熱法快速,此原因為水熱-化學電池法是由於兩極間所產生電位差加速離子遷移驅動力,促進氧化還原反應加速進行,使得在相同條件製程下,水熱-化學電池法膜厚成長較水熱法快速之原因。 將所生成之NaHTi3O7膜浸泡於模擬人體體液後,結果顯示非晶(少量結晶)NaHTi3O7膜表面成長磷灰石層效果明顯較非晶NaHTi3O7膜要良好,附著性也較佳。非晶NaHTi3O7膜必須要在600°C下熱處理後,方能有與非晶(少結晶)NaHTi3O7膜有類似之表面磷灰石成長結果。由於本研究所製備之NaHTi3O7膜可直接成長磷灰石層且附著性良好,極具生醫材料應用潛力。zh_TW
dc.description.abstractThe objective of this research is to synthesize bioactive NaHTi3O7 films on Ti-coated Si (Ti/Si) by the hydrothermal-galvanic couple method at low temperatures (<100C). No research concerning the preparation of NaHTi3O7 films by using such a method or substrates has been reported in the literatures. In this work, the NaHTi3O7 films were synthesized over Ti/Si substrates in NaOH alkaline solutions using a hydrothermal-galvanic couple method. The influences of the NaOH concentration, the reaction temperature, and the time on the growth of NaHTi3O7 are discussed. In addition, the hydrothermal method also employed for comparison. The obtained NaHTi3O7 films were soaked in simulated body fluid (SBF) to evaluate the biological activity by growing the apatite on the NaHTi3O7 surface. The NaHTi3O7 films prepared on Ti/Si below 100C by both the hydrothermal-galvanic couple and the hydrothermal methods were confirmed by X-ray diffraction, Raman spectrometer, and X-ray photoelectron spectroscopy. The surface morphology and thickness of obtained NaHTi3O7 films was investigated by field-emission scanning electron microscopy. The NaHTi3O7 films which low crystallinity could be obtained in 4M NaOH solutions at 80C for 2h by both the hydrothermal-galvanic couple and the hydrothermal methods. The thickness of obtained NaHTi3O7 films was about 350 nm by the hydrothermal-galvanic couple method, while the films thickness was merely about 200 nm by the hydrothermal method. The results indicate that the hydrothermal-galvanic couple technique could enhance the growth rate of the films. The amorphous NaHTi3O7 films were obtained in the 4M NaOH solution as the reaction temperature was 50-80C. NaHTi3O7 films with low crystallinity could be prepared in 6M NaOH solution at 60C for 2h by using a hydrothermal-galvanic couple method. Nano-network structured NaHTi3O7 films could be synthesized by both the hydrothermal-galvanic couple and the hydrothermal methods. The pore size and the thickness of nano-structured NaHTi3O7 films increased with increasing of the NaOH concentration and the hydrothermal temperature, as well as the reaction time. Because the porous NaHTi3O7 films exhibited lower density, the actual thickness of the films was much higher than the calculated value. It has been found that growth rate of the film synthesized by the hydrothermal-galvanic couple technique was much faster than that prepared by the hydrothermal method, which is due to the voltage drop existing between two electrodes. The voltage drop apparently improves the migration of ions in solutions to enhance the reaction rate. The NaHTi3O7 films with low crystallinity favored for the growth of apatite on the NaHTi3O7 film surface with satisfactory adhesion. Similar results could be observed on the amorphous NaHTi3O7 films favorably after annealed at 600C. This indicates that apatite could grow on the NaHTi3O7 films without any post-treatment, suggesting that the films may have great potentials in biomaterials.en_US
dc.description.tableofcontents摘要 I 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究目的 2 第二章 文獻回顧與理論背景 3 2.1生醫材料 3 2.1.1 鈦 4 2.1.2 NaHTi3O7 5 2.1.3 氫氧基磷灰石之特性 6 2.1.4 二氧化鈦 7 2.2以水熱法製備鈦酸鹽 9 2.3 鈦氧化物披覆氫氧基磷灰石 10 2.4 以水熱法製備二氧化鈦薄膜 12 2.5 以其他方式製備二氧化鈦薄膜 13 2.6水熱法與化學電池原理 14 第三章 實驗方法 17 3.1 實驗流程 17 3.2 基材前置作業 17 3.3反應溶液配置 17 3.4 低溫水熱-化學電池法製備NaHTi3O7膜之方法 19 3.5 模擬人體體液(Simulated body fluid, SBF) 21 3.5.1模擬人體體液配置 21 3.5.2 反應後之NaHTi3O7膜浸泡於模擬人體體液 22 3.6 分析儀器 22 3.6.1 光學顯微鏡 22 3.6.2 X光繞射分析儀 22 3.6.3 拉曼散射光譜儀 23 3.6.4 場發射掃描電子顯微鏡 24 3.6.5 X光光電子能譜儀 24 第四章 結果 25 4.1 Ti/Si原始基材分析 25 4.1.1 基材之外觀與結晶相分析 25 4.1.2 基材之微結構與膜厚分析 26 4.2 以水熱-化學電池法於Ti/Si製備NaHTi3O7膜 27 4.2.1 NaHTi3O7膜之外觀與結晶相及結構分析 27 4.2.2 NaHTi3O7膜之微結構與膜厚分析 37 4.2.3 NaHTi3O7膜之成份/化學組態分析 51 4.3 以水熱法於Ti/Si製備NaHTi3O7膜 60 4.3.1 NaHTi3O7膜之外觀與結晶相及結構分析 60 4.3.2 NaHTi3O7膜之微結構與膜厚分析 62 4.4經由不同溫度退火之相變化 64 4.5 NaHTi3O7膜浸泡於模擬人體體液 67 4.5.1 浸泡後之NaHTi3O7膜結晶相分析 67 4.5.2 浸泡後之NaHTi3O7膜微結構及成分分析 71 第五章 討論 85 5.1水熱-化學電池法與水熱法於Ti/Si上成長NaHTi3O7膜比較 85 5.2 探討NaHTi3O7膜之機制 89 5.3製程參數對NaHTi3O7膜影響 90 5.3.1 NaOH的濃度效應 92 5.3.2 反應溫度效應 93 5.3.3 反應時間效應 94 5.4 NaHTi3O7膜浸泡至模擬人體體液之探討 94 5.5 綜合討論 96 第六章 結論 98 參考文獻 99zh_TW
dc.titleSynthesis of bioactive NaHTi3O7 films on Ti-coated Si by a low temperature hydrothermal-galvanic couple methoden_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:材料科學與工程學系
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.