Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10702
標題: 以熱化學氣相沉積法製備碳密封鍍層光纖:不同乙炔/氮氣比例、溫度、壓力及流量對碳鍍層性質之影響
Hermetically carbon-coated optical fibers prepared by thermal chemical vapor deposition: effects of different acetylene/nitrogen ratios, temperatures, pressures, and flow rates on the properties of carbon coatings
作者: 李任弘
Lee, Ren-Hong
關鍵字: Hermetically carbon-coated optical fibers;碳密封鍍層光纖;thermal chemical vapor deposition;熱化學氣相沉積
出版社: 材料科學與工程學系所
引用: [1]李銘淵, 光纖通信概論, 全華科技圖書公司 (2005). [2]D.K. Mynbaev and L.L. Scheiner, “Fiber-optic Communications Technology,” Prentice Hall, New Jersey (2001). [3]吳順正, 光纖特性與應用, 全華科技圖書公司 (1993). [4]W.A. Gambling, IEEE Journal on Selected Topics in Quantum Electronics, 6 (2000) 1084. [5]Gred Keiser, “Optical Fiber Communication, Second Edition,” McGraw-hill, New York (1991). [6]K.C. Kao, “Optical Fiber System:Technology, Design, and Applications,” McGraw-hill, New York (1982). [7]李揚漢, ,許立根, 譚昌文, 曹士林, 洪鴻文, 楊淳良, 趙亮琳, 光纖通信網路, 五南圖書公司 (2007). [8]P.C.P. Bouten and G. deWith, Journal of Applied Physics, 64 (1988) 3890. [9]A. Iino, M. Kuwabara, and K. Kokura, Journal of Lightwave Technology, 8 (1990) 1675. [10]J.L. (Armstrong) Mrotek, M.J. Matthewson, and C.R. Kurkjian, Journal of Lightwave Technology, 19 (2001) 988. [11]A. H. Cherin, An Introduction to Optical Fibers, McGraw-Hill, New York (1983). [12]M.J. Matthewson, Proceeding of a Conference held 8-9 September, Boston, Massachusetts, paper CR50 (1993) 3. [13]C.R. Kurkjian, J.T. Krause, and M.J. Mattewson, Journal of Lightwave Technology, 7 (1989) 1360. [14]M.L. Stein, S. Aisenberg, and J. Stevens, “Ion-plasma Deposition of Carbon-indium Hermetic Coating for Optical Fibers,” Optical Fiber Communication Conference, Technical Digest, paper ThM25 (1988). [15]M.M. Bubnov, E.M. Dianov, and S.L. Semjonov, “Maximum Value of Fatigue Parameter n for Hermetically Coated Silica Glass Fibers,” Optical Fiber Communication Conference, Technical Digest, paper ThF2 (1992). [16]J.P. Powers, “An Introduction to Fiber Optic Systems,” Aksen Associates, Boston (1993). [17]T. Nozawa, D. Tanaka, A. Wada, and R. Yamauchi, “Novel Metal-coated Solderable Optical Fibers,” Optical Fiber Communication Conference, Technical Digest, Paper ThF3 (1992). [18]D.R. Biswas, Optical Engineerings, 31 (1992) 1400. [19]D.L. Griscom, K.M. Golant, A.L. Tomashuk, D.V. Pavlov, and Yu. A. Tarabrin, Applied Physics Letter, 69 (1996) 322. [20]V. Hagopian, Nuclear Physics B, 78 (1999) 635. [21]H.S. Seo, U.C. Paek, K. Oh, and C.R. Kurkjian, Journal of Lightwave Technology, 16 (1998) 2355. [22]S.M. Chen, “Electroplated Hermetic Fiber,” Electronic Components and Tech. Conf., 48th, p. 418 (1998). [23]S.L. Semjonov, M.M. Bubnov, N.B. Kurinov, and A.G. Schebuniaev, “Stability of Mechanical Properties of Silica Based Optical Fibers under γ-radiation,” Radecs 97 4th European conf. (1998). [24]M. Sedlar and L. Pust, Ceramics International, 21 (1995) 21. [25]N. Yoshizawa, H. Tada, and Y. Katsuyama, Journal of Lightwave Technology, 9 (1991) 417. [26]Y. Katsuyama, N. Yoshizawa, and T. Yashiro, Journal of Lightwave Technology, 9 (1991) 1041. [27]M. Ohring, “Materials science of thin films”, Second Edition, Academic Press, San Diego, 277 (2002). [28]M. Ohring, “Materials science of thin films deposition and structure,” New Jersey (2002). [29]柯賢文, 表面與薄膜處理技術, 全華科技圖書公司 (2005). [30]S.T. Shiue, Y.S. Lin, Journal of Applied Physics, 83 (1998) 5719. [31]S.T. Shiue, H.H. Hsiao, T.Y. Shen, H.C. Lin, K.M. Lin, Thin Solid Films, 483 (2005) 140. [32]S.T. Shiue, C.H. Yang, R.S. Chu, T.J. Yang, Thin Solid Films 485 (2005) 169. [33]S.S. Chen, S.T. Shiue, Y.H. Wu, K.J. Cheng, Surface and Coatings Technology, 202 (2007) 798. [34]Z. Hu, K.J. Huttinger, Carbon, 41 (2003) 1501. [35]C.A. Taylor, M.F. Wayne, W.K.S. Chiu, Surface and Coatings Technology, 182 (2004) 131. [36]S.T. Shiue, H.C. Lin, T.Y. Shen, Hao Ouyang, Applied Physics Letters, 86 (2005) 251910. [37]R.L. Mccreery, “Raman Spectroscopy for Chemical Analysis,” John Wiley&Sons, Canada (2000). [38]F. Tuinstra, and J.L. Koenig, The Journal of Chemical Physical, 53 (1970) 1126. [39]P.C. Eklund, J.M. Holden, and R.A. Jishi, Carbon, 33 (1995) 959. [40]J.F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy,” Jill Chastain, United States of America (1992). [41]T. Young, “An essay on the cohesion of fluids,” Philosophical Transactions of the Royal Society of London 95 (1805) 65-87. [42]A.C. Fischer-Cripps, “Nanoindentation,” Springer-verlag, New York (2002). [43]F.R. Brotzen, Inter. Mater. Rev., 39 (1994) 24. [44]Instruction manual of the Four-point Probe (Model:QT-50). http://www.mems.louisville.edu/lutz/resources/sops/sop45.html [45]A. Becker and K. J. Hüttinger, Carbon, 36, (1998) 177. [46]M. H. Back, Canadian Journal of Chemistry, 49, (1971) 2199. [47]K. J. Hüttinger, Chemical Vapor Deposition, 4 (1998) 151. [48]Y.S. Ding, W.N. Li, S. Iaconetti, X.F. Shen, J. DiCarlo, F.S. Galasso, S.L. Suib, Surface and Coatings Technology, 200 (2006) 3041. [49]B.D. Cullity, S.R. Stock, “Elements of X-ray Diffraction,” Third ed., Prentice Hall, New Jersey (2001). [50]L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-paniago, M. A. Pimenta, Applied Physics Letters, 88 (2006) 163106. [51]A.C. Ferrari, J. Robertson, Physical Review B, 61 (2000) 14095. [52]E. Tomasella, C. Meunier, S. Mikhailov, Surface and Coatings Technology, 141 (2001) 286. [53]M. Lejeune, O. D. Drouhin, J. Henocque, R. Bouzerar, A. Zeinert, M. Benlahsen, Thin Solid Films, 389 (2001) 233. [54]Gwénaëlle Le Dû, Natacha Celini, Faiza Bergaya, Fabienne Poncin-epaillard, Surface and Coatings Technology, 201 (2007) 5815. [55]N. Inagaki, K. Narushima, H. Hashimoto, K. Tamura, Carbon, 45 (2007) 797. [56]P. Mérel, M. Tabbal, M. Chaker, S. Moisa, J. Margot, Applied Surface Science, 136 (1998) 105. [57]Po-yo Chen, “Effects of nitrogen/methane ratios and substrate sizes on the properties of carbon coatings on optical fibers prepared by thermal chemical vapor deposition,” Master thesis, Department of Materials Science and Engineering National Chung Hsing University, (2008). [58]H.M. Shang, Y. Wang, S.J. Limmer, T.P. Chou, K. Takahashi, and G. Z. Cao, Thin Solid Films, 472 (2005) 37. [59]S. Adachi, T. Arai, K. Kobayashi, Journal of Applied Physics, 80 (1996) 5422. [60]M. Iwaki, Y. Suzuki, A. Nakao, H. Watanabe, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 127/128 (1997) 208. [61]L. Ostrovskaya, V. Perevertailo, V. Ralchenko, A. Dementjev, O. Loginova, Diamond and Related Materials, 11 (2002) 845. [62]T.H. Fang, W.J. Chang, Applied Surface Science, 220 (2003) 175. [63]J.H. Son, M. Y. Park, S. W. Rhee, Thin Solid Films 335 (1998) 229. [64]N. Yoshizawa, H. Tada and Y. Katsuyama, J. Lightwave Technol. 9 (4) (1991) 417. [65]Hsun-Yu Lin, “The study of hermetically carbon-coated optical fibers prepared by thermal chemical vapor deposition using acetylene gas,” Master thesis, Department of Materials Science and Engineering National Chung Hsing University, (2008).
摘要: 
本論文主要是以熱化學氣相沉積法製備光纖碳鍍層,探討乙炔/氮氣比、沉積溫度、沉積壓力及沉積流量對碳鍍層性質之影響。本實驗利用光學顯微鏡、X光繞射儀、拉曼光譜儀、X光光電子能譜儀、場發式掃描電子顯微鏡、原子力顯微鏡、接觸角儀器、四點探針儀與奈米壓痕測試儀來觀察並量測碳鍍層的表面形貌、微觀結構、碳膜厚度、表面特性、電學性質與機械性質。研究結果發現,隨著乙炔含量百分比增加、沉積溫度上升、沉積壓力提高或者沉積流量下降時,碳鍍層的沉積速率、表面粗糙度及電阻率上升,而碳鍍層結構有序程度、平均微晶大小 (Lc和La) 、抗水性和機械性質有下降的趨勢。綜合耐溫變試驗的結果可得到,當碳鍍層厚度不小於289 nm時,碳鍍層可通過溫變試驗,使碳鍍層可達到保護玻璃光纖的效果。

This study investigates the effects of C2H2/(N2+C2H2) ratios, deposition temperatures, deposition pressures and deposition flow rates on the properties of carbon coatings on optical fibers prepared by thermal chemical vapor deposition. The surface morphology, microstructure, coating thickness, surface property, and electrical property of carbon coatings were investigated by optical microscopy, X-ray diffraction spectrometer, Raman scattering spectrometer, X-ray photoelectron spectrometer, field emission scanning electron microscopy, atomic force microscopy, contact angle meter, four point probe method, and nanoindenter. The results indicate that the deposition rate, surface roughness, and the electrical resistivity of the carbon coatings increase as the C2H2/(N2+C2H2) ratio, deposition temperature, deposition pressure increase or deposition flow rates decrease, while the degree of ordering, the mean crystallite size (Lc), in-plane crystallite size (La), water-repellency and mechanical properties of the carbon coating decrease. Additionally, based on the low-temperature surface morphology of the carbon coatings, the carbon coating deposited with coatings thickness greater than 289 nm is the best for use as the hermetical optical fiber coating.
URI: http://hdl.handle.net/11455/10702
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.