Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10706
標題: 探討氧化層對矽奈米線擴散機制之影響
The discussion of oxide barrier for silicon nanowire diffusion
作者: 鄭名廷
Cheng, Ming-Ting
關鍵字: NiSi;矽化鎳;nanowire;MD;奈米線;分子動力學
出版社: 材料科學與工程學系所
引用: 第一章 1. S. Iijima, “Helical of Microtubules of Graphitic Carbon”, Nature, 354, 56, 1991 2. C. M. Lieber, “One dimensional nanostructures: chemistry, physics,and applications, solid state communications”, Solid State Comm., 107, 607, 1998 3. G. E. Moore, “Cramming More Components onto Integrated Circuits”, Electronics 38, 56, 1965. 4. 科技產業資訊室:晶片的奈米技術導入進程– Intel 之奈米版圖 5. L.J. Chen , JOM, 57, 24, 2007 6. Z. Tang , N. A. Kotov, and M. Giersig, “Spontaneous Organization of single CdTe Nanoparticles into Luminescent Nanowires”, Science Vol. 297, 237, 2002 7. T. T. Albrecht, J. Schotter, G. A. Kastle, N.Emley,”Ultrahigh – Density Nanowire Arrays Grown in self-Assembled Diblock Copolymer Templates”,Science Vol.290, 2126, 2000 8. A. Sugawara, T. Coyle, G..G.. Hembree, and M.R.Scheinfein,”Self-organized Fe nanowire arrays prepared by shadow deposition on NaCl(110) templates”,Appl. Phys. Lett. 70, 1043-1045(2001). 9. R. S. Wagner and W. C. Ellis et al. Applied Physics Letter 4 (1964) 5 10. Timothy J. Trentler, Kathleen M. Hickman, Subhash C. Goel, Ann M. Viano, Patrick C. Gibbons, William E. Buhro, Science, 270, 1791, 1995 11. D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yang, J. Xu, Z. H. Xi, and S. Q. Feng ,Physica E 9, 305 (2001). 12. Y. Xia, and P. Yang, And. Mater. 15, 353, 2003 13. S. T. Lee, N Wang, Y F Zhang et al. MRS Bull. 24, 36, 1999 14. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Reviews of Modern Physics, Vol. 64, No. 4, 1045 (1992) 15. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964) 16. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Reviews of Modern Physics, Vol. 64, No. 4, 1045 (1992) 17. Irving, J. H. and Kirkwood, J. G. , Journal of chemical Physics, Vol.18, pp.817-829(1950) 18. Alder, B. J. and Wainwright, T. E. , Journal of chemical Physics, Vol.27, p.1208-1209(1957) 19. Metropolis, N. and Ulam, S., J. Amer. Stat. Assoc. 44, 335-341 , 1949 20. Haile, J. M., Molecular dynamics simulation: elementrary methods (A Wiley-interscience publication), John Wiley & Sons, Inc. the United States of American (1992). 21. Plimpton, S. , Journal of Computational Physics, Vol. 117, p.1-19(1995) 22. R. Car and M. Parrinello, Phys. Rev. Lett 55 (1985) 2471 23. M.P. Teter, M.C. Payne and D.C. Allan, Phys. Rev. B 40, 12255 (1989) 24. T. Tortilla, T. Fulmshir, T. SLlzLlki, Mater. Tran. 37, 1298 (l996) 25. Y. Shao, P. C. Clapp, J. A. Rifkin, Metal. Tran. 1477 (1996) 26. R. W. Smith, G. S. Was, Phys. Rev. 40, 10322 (1989) 27. Yi Cui, Qingqiao Wei, Hongkun Park, and Charles M. Lieber , Science Vol. 293, pp. 1289-1292, 2001. 28. Duan X, Huang Y, Cui Y, Wang J, Lieber CM., Nature 409, pp.66 – 69, 2001. 29. M. H. Huang , Samuel Mao,2 Henning Feick,3 Haoquan Yan, Yiying Wu,1 Hannes Kind,1 Eicke Weber,3 Richard Russo, Peidong Yang , Science 292, pp.1897, 2001. 第二章 1. S. M. Prokes and K. L. Wang, Mater. Res. Sci. Bull. 24, 13 (1999). 2. J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32, 435 (1999). 3. G. E. Moore, “Cramming More Components onto Integrated Circuits”, Electronics 38 (1965) 56-59. 4. S. Wolf, “Silicon Processing for the VLSI Era: The Submicron MOSFET” , vol. 3, Sunset, CA: Lattice, (1995). 5. 科技產業資訊室:晶片的奈米技術導入進程– Intel 之奈米版圖 6. U. Falke, et al., Phys. Stat. Sol. (a) 162, p. 615, 1997. 7. B.A. Julies, et al., Thin Solid Films, 347, p. 201, 1999. 8. L.J. Chen , JOM, Vol.57, No.9, p24-31,2005 9. J. Kedzierski, et al., IEDM Tech. Dig., p. 315, 2003. 10. J.P. Lu, et al., Proc. ECS, 1, p. 159, 2004. 11. H. Iwai, et al., Microelectronic Engineering 60, p. 157, 2002. 12. VLSI製造技術, 莊達人編著,高立圖書出版 1994 13. T. Ohguro et al., IEEE Tran. Electron Devices, ED-41, p.2305 (1994) 14. K. Goto, et. al., Japan Society of Applied Physics, 54th Fall Meeting, Abstract, 1993, P.711 15. K. Goto et. al., IEDM, p. 449, 1995. 16. E. G. Colgan et. al., Mater. Sci. Eng., R16, p. 43, 1996. 17. I. J. van Gurp and C. Langereis, J. Appl. Phys. 46 (1975) 4301-4307. 18. K. Goto, A. Fushida, J. Watanabe, T. Sukegawa, K. Kawamura, T. Yamazaki, and T. Sugii, IEDM Tech. Dig. (1995) 449-452. 19. R. T. Tung, and F. Schrey, Appl. Phys. Lett. 67 (1995) 2164-2166. 20. F. d''Heurle, S. Petersson, L. Stolt, and B. Strizker, J. Appl. Phys. 53 (1982) 5678-568. 21. K. Maex, Material Science and Engineering, R11, (1993) 22. R. T. P. Lee, D. Z. Chi, M. Y. Lai, N. L. Yakovlev, and S. J. Chua, J. Electrochem. Soc. 151 (2004) G642-G647. 23. R.N. Wang, and J. Y. Feng, J. Phys. Condens. Matter 15 (2003) 1935-1942. 24. W. L. Tan, K. L. Pey, S. Y. M. Chooi, J. H. Ye, and T. Osipowicz, J. Appl. Phys. 91 (2002) 2901-2909. 25. P. Yang, Y. Wu, and R. Fan, Int. J. Nanoscience, 1, 1, 2002 26. L.J. Chen, Journal Of Materials Chemistry, 2007, 17, 4639-4643 27. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 1964, 4, 89 28. A. M. Morales and C. M. Lieber, Science, 1998, 279, 208 29. R. S. Wagner and W. C. Ellis et al. Applied Physics Letter 4 (1964) 5 30. J. B. Hannon, S. Kodambaka, F. M. Ross and R. M. Tromp, Nature, 2006, 440, 69. 31. E. I. Givargizov ,Journal of Crystal Growth, Volume 31 20 1975 32. Timothy J. Trentler, Kathleen M. Hickman, Subhash C. Goel, Ann M. Viano, Patrick C. Gibbons, William E. Buhro, Science, 270, 1791, 1995 33. D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yang, J. Xu, Z. H. Xi, and S. Q. Feng ,Physica E 9, 305 (2001). 34. Y. Xia, and P. Yang, And. Mater. 15, 353, 2003 35. M. J. Zheng, L D Zhang, G H Li et al. Appl Phys Lett., , 79: 839. 2001 36. S. T. Lee, N Wang, Y F Zhang et al. MRS Bull. 1999: 36~42. 37. N. Wang, Y H Tang, Y F Zhang et al. Phys. Rev B., 1998, 58: R16024~16026 38. Yuan Yao , Fanghua Li , Shuit-Tong Lee, Chemical Physics Letter, 406, 381, 2005 39. R. Q. Zhang , Y. Lifshitz and S. T.Lee , Adv. Mater. , 15, 635,2003 40. 楊裕雄、蕭程允, 奈米線場效電晶體生物感測器之應用 2007 41. D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, S. T. Lee, SCIENCE, 299, 1874,2003 42. Jia-An Yan, Li Yang, and M. Y. Chou, Phys. Rev. B 76, 115319 (2007) 43. D. Li Y. Wu, P. Kim, L. Shi, P. Yang and A. Majumdar, Appl. Phys. Lett., 2003, 83, 2934 44. I. Ponomareva, D. Srivastava and M. Menon, Nano Lett., 2007, 7, 1155. 45. R. R. HE AND P. D. YANG Nat. Nanotechnol., 2006, 1, 53 46. H. W. Wu, C. J. Tsai, and L. J. Chen , APPLIED PHYSICS LETTERS 90, 043121 ,2007 47. K.N. Tu , G.. Ottavian. ,JAP, 54, 758 (1983) 48. K. Toman, Acta Crystallogr. 5, 329, (1952). 49. N. Kawasaki, et al., Ultramicroscopy 108, 399,(2007) 50. K. Toman , Acta Cryst. (1951). 4, 462 51. P. Villars, L.D. Calvert, Pearson’s Handbook of Crystallographic Park, Data for Intermetalic Phases, American Society of Metals, Metals 1985. 52. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964) 53. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965) 54. John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) 55. The Art of Molecular Dynamics Simulation, D. C. Rapaport 56. Xinyuan Zhao, Davide Ceresoli, and David Vanderbilt, Physical Review B 71, 085107 (2005) 57. D. R. Hamann, M. Schluter, and C. Chiang Phy. Rev. Lett. 43, 1494 (1979) 58. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Reviews of Modern Physics, Vol. 64, No. 4, 1045 (1992) 59. F. S. Ham and B. Segall, Phys. Rev. 124, 1786 (1961) 60. M. Methfessel, and M. Van Schilfgaarde, Phys. Rev. B, 48, 4937 (1993) 61. G. A. Sai-Halasz, L. Esaki, and W. A. Harrison, Phys. Rev. B 18, 2812 (1978) 62. Charles Kittel, Introduction to Solid State Physics, John Wiley and Sons 63. Xinyuan Zhao, Davide Ceresoli, and David Vanderbilt, Physical Review B 71, 085107 (2005) 64. The guide of VASP, can be retrieved from:http://cms.mpi.univie.ac.at/VASP/ , written by Georg Kresse and Jurgen Furthmuller 65. ASHCROFT/MERMIN, Solid state physics 66. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964) 67. S.H. Vosko, J.P.Perdew, and A. H. MacDonald, Phys. Rev. Lett. 35, 1725 (1975). 68. 江進福, 物理雙月刊, 廿三卷五期, P549-553 69. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965) 70. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. Vol45, 566 (1980) 71. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995). 72. Giovanni Onida, Lucia Reining, and Angel Rubio, Review of Modern Physics, vol. 74, 601 (2002 73. Vladimir I. Anisimov, Jan Zaanen, and Ole K. Andersen, Phys. Rev. B 44, 943 - 954 (1991) 74. M.P. Teter, M.C. Payne and D.C. Allan, Phys. Rev. B 40, 12255 (1989) 75. D.M. Bylander, L. Kleinman and S. Lee, Phys Rev. B 42, 1394 (1990) 76. B. Liu, in Report on Workshop "Numerical Algorithms in Chemistry: Algebraic Methods" edited by C. Moler and I. Shavitt (Lawrence Berkley Lab. Univ. of California, 1978), p.49 77. S. Blugel, PhD Thesis, RWTH Aachen (1988). 78. D. M. Wood and A. Zunger, J. Phys. A, 1343 (1985) 79. P. Pulay, Chem. Phys. Lett. 73, 393 (1980) 80. D. D. Johnson, Phys. Rev. B38, 12 087 (1988) 81. The guide of VASP, can be retrieved from:http://cms.mpi.univie.ac.at/VASP/ , written by Georg Kresse and Jurgen Furthmuller 82. John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) 83. J. P. Perdew, in Electronic Structure of Solids ‘91, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991), p. 11 84. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992); 48, 4978(E) (1993). 85. A. D. Becke, J. Chem. Phys. 96, 2155 (1992). 86. E. I. Proynov, E. Ruiz, A. Vela, and D. R. Salahub, Int. J. Quantum Chem. S29, 61 (1995) 87. B. Hammer, K. W. Jacobsen, and J. K. Norskov, Phys. Rev. Lett. 70, 3971 (1993); B. Hammer and M. Scheffler, Phys. Rev. Lett. 74, 3487 (1995). 88. D. R. Hamann, Phys. Rev. Lett. 76, 660 (1996); P. H. T. Philipsen, G. te Velde, and E. J. Baerends, Chem. Phys. Lett. 226, 583 (1994). 89. A. Zupan, J. P. Perdew, K. Burke, and M. Causa, Int. J. Quantum Chem. (to be published). 90. C. Filippi, D. J. Singh, and C. Umrigar, Phys. Rev. B 50, 14 947 (1994). 91. J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B (to appear). 92. M. Levy, Int. J. Quantum Chem. S23, 617 (1989). 93. C. J. Umrigar and X. Gonze, in High Performance Computing and its Application to the Physical Sciences, Proceedings of the Mardi Gras 1993 Conference, edited by D. A. Browne et al. (World Scientific, Singapore, 1993). 94. G. Ortiz, Phys. Rev. B 45, 11 328 (1992). 95. C. Bowen, G. Sugiyama, and B. J. Alder, Phys. Rev. B 50, 14 838 (1994); S. Moroni, D. M. Ceperley, and G. Senatore, Phys. Rev. Lett. 75, 689 (1995). 96. The Art of Molecular Dynamics Simulation, D. C. Rapaport, 2004 97. 2008第一原理進階課程 MD simulation,張俊明教授 98. Michael P. Allen, John von Neumann Institute for Computing, NIC Series, Vol. 23, 1, 2004 99. Allen M. P.;. Tildesley, D. J Computer Simulation of Liquids; Oxford Science︰ London, 1991 100. Leach “Molecular modelling: principles and applications” Prentice-Hall, 2001 101. Richard A. Lewis and Andrew R. Leach, Journal of Computer-Aided Molecular Design,8,467,1994 102. Irving, J. H. and Kirkwood, J. G. Journal of chemical Physics, Vol.18, pp.817-829(1950) 103. Alder, B. J. and Wainwright, T. E. , Journal of chemical Physics, Vol.27, 1208-1209(1957). 104. Metropolis. N., Rosenbluth., A. W., Rosenbluth, M. N., Teller, A. N.and Teller. E., Journal of chemical Physics, Vol.21, No.6, 1087-1092(1953). 105. Haile, J. M., Molecular dynamics simulation: elementrary methods (A Wiley-interscience publication), John Wiley & Sons, Inc. the United States of American (1992) 106. J. E. Lennard-Jones, Proc. Roy. Soc. London, 1924 107. L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals”, Phys. Rev., Vol. 114, No.3, pp. 687, 1959 108. R. A. Johnson, Phys. Rev. B, Vol. 37, pp. 3847-4339, 1987. 109. V. Rosato, M. Guillope, and B. Legrand, Philosophical Magazine A, Vol. 59, 321-336, 1989 110. Spohr, E. J. Mol. Liq. 1995, 64, 91 111. P. E. Blochl, Phy. Rev. B. 50, 17953, 1994 112. Nose, S. Journal of Chemical Physical 1984, 81, 511 113. Hoover, W. Physical Review A 1985, 31,1695 114. Leach, A. R. molecular Modeling: principle and applications; Longman, 1996. 115. L. Verlet., Phys. Rev., 159, 98, 1967 116. Quentrec, B. and Brot, C. Journal of Computational Physics, Vol.13 117. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996) 118. D. Vanderbilt, Phys. Rev. B, 41, 7892 (1990) 119. C. G. Bmyden, Math. Comput 19 (155) 577 120. In general the Kohn-Sham energy functional for an ultrasoft (US) Vanderbilt pseudopotential (PP) can be written as [25-271] 121. 林智仁,羅聖全,工業材料雜誌,201期,P.90-98,民92年9月 122. B. Fultz and J. M. Howe: “Transmission Electron Microscopy and Diffractometry of Materials”, Springer 2002 123. Earl J. Kirkland, Advanced computing in electron in electron microscopy (1998) , p133-138 124. JEMS software package that is developed by Pierre Stadelmann, http://cimesg1.epfl.ch/CIOL/ems.html 125. R. F. C. Farrow, R. F. Marks, D. Weller, G. R. Harp, T. A.Rabedeau, M. F. Toney, and S. S. P. Parkin, Mater. Sci. Eng. R. 11, 155 (1993). 126. Brown, Robert ,Phil. Mag. 4, 161-173, 1828. 127. A. Einstein, Ann. d. Phys., 17, 549 (1905) 128. Cukier, Robert I.; Kapral, Raymond; Lebenhaft, Julian R. J. Chem. Phys. 73, 5244 (1980) 129. Fan GY and Cowley J M. Ultramicroscopy. 17, 345, 1985 130. 陳力俊 等著,材料電子顯微鏡學,國科會精儀中心 131. M. Levy, Int. J. Quantum Chem. S23, 617 (1989). 132. 中興大學材料工程學系碩士論文,砷化鎵晶圓接合界面氧化層及其界面性質之第一原理計算,邱孝豪,民96。 第四章 1. R. Killas and R. Gronsky, Ultramicroscopy, 16, 193, 1985 2. R. J. Bell and P. Dean, Phil. Mag. , 25, 1381, 1972 3. K. C. Lu, W. W. Wu, H. W. Wu, C. M. Tanner, J. P. Chang, L. J. Chen, K. N. Tu, Nano Lett. 7, 2389, 2007. 4. SORAB K. GHANDHI, FRANK L. THIEL, PROCEEDINGS OF THE IEEE, 57, 1484, 1969 5. R. N. Ghoshtagore, JAP, 40, 4374, 1969 6. Han, Susan and Young, David John, Mat. Res. , 7, 11, 2004. 7. Yongchang Liu, Qingzhi Shi, Gencang Yang, Yaohe Zhou, Materials Letters , 58, 428, 2004. 8. MIZUNO MASATAKA, ITSUMI YOSHIO, OGURA TETSUZ, Journal of the Japan Copper and Brass Research Association, 38, 291, 1999 9. B. Fultz, PRB, 44, 9805, 19 附錄D 1. Jia-An Yan, Li Yang, and M. Y. Chou, PHYSICAL REVIEW B 76, 115319 2007 2. Paul W. Leu, Bin Shan, and Kyeongjae Cho, PHYSICAL REVIEW B 73, 195320 2006 3. Michael Rohlfing, Peter Kruger, and Johannes Pollmann , Phys. Rev. B, 48, 17791, 1993 附錄E 1. The theory of Brillouin zones and electronic states in crystals, H Jones, 1962. 2. J.R.Chelikowsky and M.L.Cohen, Phys.Rev. B, 10, 5095, 1974.
摘要: 
本研究主要是藉由在In-situ TEM中,在鎳與被氧化層包覆矽奈米線的點接觸式反應中,發現形成矽化鎳結構並非在鎳與矽所接觸的地方,而是在鎳與鎳之間開始形成相變化的現象感興趣,但在實驗上,我們無法精準的觀察氧化層對於鎳與矽奈米線之間究竟扮演什麼腳色;所以,我們利用建構於密度泛函理論的第一原理計算與分子動力學(Molecular dynamics, MD)的方式來探討氧化層對其擴散機制之影響。我們的研究發現,當有氧化層SiO2存在時,鎳在擴散進矽奈米線前會受到氧化層的影響,使鎳原子在氧化層中均勻的擴散開來;當兩個鎳粒子在氧化層中擴散的鎳原子與矽奈米線相碰觸時會在中間形成較高濃度的區域,所以會在鎳粒子中間先開始相變化。另外,在有氧化層與無氧化層的HRTEM中發現所生成的矽化鎳為不同相的結構,這是因為不同的擴散機制,經由不同的動力學路徑(kinetic path)而形成介穩定態的Ni2Si結構。

Using the In-situ transmission electron microscopy (TEM), multiple heterostructures of nickel siliside nanowire was found to be formed by the point-contact reaction. In the case with the existence of surface silicon oxide of silicon nanowire, we observed that phase transition formed between the nickel particle. We interested this phenomenon by adopting the first-principles molecular dynamics (MD) to understand the effect of oxide surface during the diffusion process of nickel particle. Furthermore, different kinetic paths can cause the formation of different phases.
URI: http://hdl.handle.net/11455/10706
Appears in Collections:材料科學與工程學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.