Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorChen, Chun-Jenen_US
dc.identifier.citation黃榮鑑、謝志敏 (2006),「孤立波通過隆起底床引致碎波流場之三維數值研究(2/3)」,行政院國家科學委員會補助專題研究計畫。 Carrier, G. F. and Greenspan, H. P. (1958)“Water waves of finite amplitude on a sloping beach,” Journal of Fluid Mechanics., Vol.4, pp. 97-109. Carrier, G.F., Wu, T.T., Yeh, H., (2003). “Tsunami run-up and draw-down on a plane beach,” Journal of Fluid Mechanics. 475, 79–99. Chang, K.A., Liu, P.L.F., (1999) “Experimental investigation of turbulence generated by breaking waves in water of intermediate depth,” Physics of Fluids, vol. 11(11), pp.3390-3400. Chang, K.A., Hsu, T.-J., Liu, P.L.-F., (2001). “Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle. Part I: Solitary waves,” Costal Engineering. 44, 13–36. Choi, B.H., Kim, D.C., Pelinovsky, E., Woo, S.B., (2007). “Three‐dimensional simulation of tsunami run‐up around conical island,” Coastal Engineering, vol. 54, pp. 618-629 Flow Science, Inc., (2009) Flow 3D User Manual. Goring, D. G., (1990).”Propagation of long wave onto shelf”, Journal of Waterway, Port, Costal and Ocean Engineering, Vol. 118(1), pp.43-61. Grilli, S.T., Losada, M.A., and Martin, F., (1994). “Characteristics of solitary wave breaking induces by breakwaters,” Journal of Waterway Port Coastal and Ocean Engineering, ASCE, Vol. 120, No. 1, pp. 74-92 Hirt, C.W., and Nichols, B.D., (1981). “Volume of fluid method for the dynamics of free boundaries,” Journal of Computational Physics, Vol. 39, pp. 201-225. Huang, C.J., Dong, C.M. , (2001) “On the interaction of a solitary wave and a submerged dike”, Coastal Engineering, vol. 43, pp. 265-286. Li, Y., Raichlen, F., (2002) “Non-breaking and breaking solitary wave run-up,” Journal of Fluid Mechanics, Vol. 456, pp.295-318. Li, Y., and Raichlen, F., (2003). “Energy balance model for breaking solitary wave runup,” Journal of Waterway, port, Coastal, and Ocean Engineering, ASCE, Vol. 129, no. 2, ,pp. 47-59 Lin, P., Chang, K.-A., Liu, P.L.-F., (1999). “Runup and run-down of solitary waves on sloping beaches,” Journal of Waterway, Port, Costal and Ocean Engineering, 125 (5), 247–255. Lin, P., (2004). “A numerical study of solitary wave interaction with rectangular obstacles,” Costal Engineering. 51, 35–51. Lin, C., Ho, T.C., Chang, S.C., Hsieh, S.C., Chang, K.A., (2005). “Vortex shedding induced by a solitary wave propagating over a submerged vertical plate,” International Journal of Heat and Fluid Flow 26, 894–904. Liu, P.L.-F., Synolakis, C.E., Yeh, H., (1991). “Report on the international workshop on long wave run-up,” Journal of Fluid Mechanics. 229, 675–688. Liu, P.L.‐F., Cho, Y.S., Briggs, M.J., Kanoglu, U., Synolakis, C.E., (1995a). “Runup of solitary waves on a circular island,” Journal of Fluid Mechanics. 302, 259–285. Liu, P.L.‐F., Cho, Y.S., Yoon, S.B., Seo, S.N., (1995b). “Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii,” In: Tsuchiya, Shuto (Eds.), Tsunami: Progress in Prediction, Disaster Prevention and Warning. Kluwer Academic Publishers, pp. 99–115. Losada, M.A., Vidal, C., Medina, R., (1989). “Experimental study of the evolution of a solitary wave at an abrupt junction,” Journal of Geophysical Research, 94 (C10), 14557–14566. Lynett, P.J., Wu, T.R., and Liu, P.L.F., (2002). “Modeling wave runup with depth-integrated equations,” Coastal Engineering Journal, Vol. 46, No. 2, pp. 89-107. Madsen, O. S., Mei, C. C., (1969) “The transformation of a solitary wave over an uneven bottom”, Journal of Fluid Mechanics, vol. 39, pp.781-791, (1969) Sebra-Santos, F. J., Renound, D. P., Temperville, A.M., (1987) “Numerical and experiment study of the transformation of a solitary wave over a shelf or isolated obstacle.”, Journal of Fluid Mechanics, vol.176, pp. 117-134. Stansby, P.K., (2003). “Solitary wave run-up and overtopping by a semi-implicit finite-volume shallow-water Boussinesq model”. Journal of Hydraulic Research. 41 (6), 639–647. Synolakis, C.E., (1986). “The runup of long waves,” Ph.D. Theisis. California Institute of Technology, pasadena, CA. Synolakis, C.E., Bernard, E.N., (2006). Tsunami science before and beyond boxing day 2004. Philos. Trans. R. Soc. A 364, 2231–2265. Xiao, H., and Huang, W., (2008). “Numerical modeling of wave runup and forces on an idealized beachfront house,” Ocean Engineering, Vol. 35, No. 1, pp.M-116. Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., and Speziale, C. G., (1992). “Development of turbrulence models for shear flows by a double expansion technique,” Physics of Fluids A, Vol. 4, No. 7, pp. 1510-1520.en_US
dc.description.abstract本研究探討防波堤高度對於孤立波流場以及溯升高度影響。文中探討孤立波通過防波堤時周圍波形、流場變化、防波堤受力情形以及溯升高度之變化。本文係藉FLOW-3D流體動力計算軟體進行模擬,引用 RNG 紊流模式模擬流場中之紊流傳輸,求解非定常雷諾平均方程式(Reynolds Averaged Navier-Stokes Equation, RANS) 之控制方程式。由與Synolakis (1986) 孤立波於斜坡底床傳遞之驗證,顯示本文對孤立波之數值模擬具有很好的精確度。孤立波越過防波堤時,在防波堤向岸側會有類似射流(jet-like flow)的現象發生在基礎平台上方。而在射流發生處以及防坡堤堤頂處有渦度產生,並由於渦流的存在而產生紊流能量(TKE)以及紊流消散(DTKE)。根據研究結果顯示,防波堤高度會影響孤立波在後方斜坡之溯升情形,防波堤高度越高,孤立波溯升高度越低,其波峰到達時間也較慢。且射流現象隨著防波堤高度增高愈呈明顯並有跌水現象產生。而防波堤之受力情形也隨防波堤高度越高,受力越大。zh_TW
dc.description.abstractThis study investigated on the influence of a breakwater to flow field and run-up of solitary waves. A two-dimensional volume of fluid (VOF) type model called FLOW-3D, which is based on the Reynolds-Averaged Navier-Stokes (RANS) equations and the Renormalized Group k-Ɛ turbulence model, is validated by experimental data from Synolakis (1986). The results show that solitary waves passing through the breakwater, a jet-like flow injects the surface at the lee side. We also notice that the vortex generated at the top and lee-side of the breakwater. The vortex strength increase with the height of the breakwater. And we also observed at the place where vortex generated also induced the turbulent kinematic energy (TKE) and dissipation of turbulent kinematic energy (DTKE). The height of the breakwater also affect the run-up on the slope, breakwater higher the height, solitary wave run-up height is lower, the leading wave arrival time is slower. The forces impinging by the solitary wave on the breakwater is also affected by the breakwater height. The higher height, the greater force.en_US
dc.description.tableofcontents摘要 I ABSTRACT II 目錄 III 表目錄 V 圖目錄 VI 照片目錄 VIII 符號說明 IX 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧與研究目的 2 1-3 本文組織 4 第二章 數值模式 7 2-1 控制方程式 7 2-2 RNG紊流傳輸模式 9 2-3 數值方法 10 2-4 模擬條件設定 12 2-4-1 物理模型與網格設置 12 2-4-2 初始條件與邊界條件設定 14 2-4-3 求解設定 15 第三章 模擬結果與分析 21 3-1 模式驗證 21 3-2 波形變化 22 3-3 防波堤周圍流場分析 23 3-4 防波堤高度對於溯升高度之影響 25 3-5 防波堤之受力分析 25 第四章 結論與建議 53 4-1 結論 53 4-2 建議 54 參考文獻 55zh_TW
dc.subjectSolitary waveen_US
dc.titleA Numerical Study on the Influence of a Breakwater to Flow Field and Run-up of Solitary Wavesen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:土木工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.