Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10714
DC FieldValueLanguage
dc.contributor龔志榮zh_TW
dc.contributor楊聰仁zh_TW
dc.contributor薛顯宗zh_TW
dc.contributor周志謂zh_TW
dc.contributor.advisor曾文甲zh_TW
dc.contributor.author鄭隆藤zh_TW
dc.contributor.authorCheng, Lung-Tengen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:45:56Z-
dc.date.available2014-06-06T06:45:56Z-
dc.identifier.citation[1] Yablonovitch E., Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Phys. Rev. Lett., 1987, 58, 2059-2062. [2] John S., Strong Localization of Photons in Certain Disordered Dielectric Superlattices, Phys. Rev. Lett., 1987, 58, 2486-2489. [3] MD S. and TY T., Preparation of SiO2 Glass from Model Powder Compacts, 1. Formation and Characterization of Powders, Suspensions, and Green Compacts, J. Am.Ceram. Soc., 1984, 67(8), 526-532. [4] Wijnhoven J. E. G. J., Vos W. L., Preparation of Photonic Crystals Made of Air Spheres in Titania, Science, 1998, 281, 802-804. [5] Holland B.T., Blanford C.F., and Stein A., Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids, Science, 1998, 281, 538-540. [6] Joannopoulos J.D., Self-Assembly Lights up, Nature, 2001, 414, 257-258. [7] Holgado M., García-Santamaría F., Blanco A., Ibisate M., Cintas A., Míguez H., et al. Electrophoretic Deposition to Control Artificial Opal Growth, Langmuir, 1999, 15, 4701-4704. [8] Park S.H., Qin D., Xia Y., Crystallization of Mesoscale Particles over Large Areas, Adv. Mater., 1998, 10(13), 1028-1032. [9] Bartal G., Cohen O., Buljan H., Fleischer J.W., Manela O., Segev M., Brillouin Zone Spectroscopy of Nonlinear Photonic Lattices, Phys. Rev. Lett., 2005, 94(16), 163902-16304. [10] Waterhouse G.I.N., Waterland M.R., Opal and Inverse Opal Photonic Crystals: Fabrication and Characterization, Polyhedron, 2007, 26, 356-368. [11] Zhang X., Solomon D.H., Carbonization Reactions in Novolac Resins, Hexamethylenetetramine, and Furfuryl Alcohol Mixtures, Chem. Mater. 1999, 11(2), 384-391. [12] Wang H., Huang L., Holmberg B.A., Yan Y., Nanostructured Zeolite 4A Molecular Sieving Air Separation Membranes, Chem. Commun., 2002, 1708-1709. [13] Jänes A., Kurig H., Lust E., Characterisation of Activated Nanoporous Carbon for Supercapacitor Electrode Materials, Carbon, 2007, 45, 1226-1233. [14] Cesano F., Scarano D., Bertarione S., Bonino F., Damin A., Bordiga S., et al. Synthesis of ZnO-Carbon Composites and Imprinted Carbon by the Pyrolysis of ZnCl2-Catalyzed Furfuryl Alcohol Polymers, J. Photochem. Photobiol., A., 2008, 196(2-3), 143-153. [15] Sakintuna B., Yurum Y., Preparation and Characterization of Mesoporous Carbons Using a Turkish Natural Zeolitic Template/Furfuryl Alcohol System, Micropor. Mesopor. Mat. 2006, 93(1-3), 304-312. [16] Uota M., Yada M., Kuroki M., Machida M., Kijima T., Carbons from Furan-Polymers Prepared in the Presence of a Double-Chain Amphiphile, Carbon, 2004, 42(11), 2207-2213. [17] Guigo N., Mija A., Vincent L., Sbirrazzuoli N., Chemorheological Analysis and Model-Free Kinetics of Acid Catalysed Furfuryl Alcohol Polymerization, Phys. Chem. Chem. Phys., 2007, 9(39), 5359-5366. [18] Burket C.L., Rajagopalan R., Marencic A.P., Dronvajjala K., Foley H.C., Genesis of Porosity in Polyfurfuryl Alcohol Derived Nanoporous Carbon, Carbon, 2006, 44(14), 2957-2963. [19] Kawashima D., Aihara T., Kobayashi Y., Kyotani T., Tomita A., Preparation of Mesoporous Carbon from Organic Polymer/Silica Nanocomposite, Chem. Mater. 2000,12, 3397-3401. [20] Yao J.F., Wang H.T., Liu J., Chan K.Y., Zhang L.X., Xu N.P., Preparation of Colloidal Microporous Carbon Spheres from Furfuryl Alcohol, Carbon, 2005, 43(8),1709-1715. [21] Vergunst T., Kapteijn F., Moulijn J.A., Preparation of Carbon-Coated Monolithic Supports, Carbon, 2002, 40, 1891-1902. [22] Su F., Zeng J., Yu Y., Lv L., Lee J.Y., Zhao X.S., Template Synthesis of Microporous Carbon for Direct Methanol Fuel Cell Application, Carbon, 2005, 43, 2366-2373. [23] González R., Figueroa J. M., González H., Furfuryl Alcohol Polymerisation by Iodine in Methylene Chloride, Eur. Polym. J., 2002, 38, 287-297. [24] Choura M., Belgacem N.M., Gandini A., Acid-Catalyzed Polycondensation of Furfuryl Alcohol: Mechanisms of Chromophore Formation and Cross-Linking, Macromolecules, 1996, 29(11), 3839-3850. [25] Tabata S., Isshiki Y., Watanabe M., Inverse Opal Carbons Derived from a Polymer Precursor as Electrode Materials for Electric Double-Layer Capacitors, J. Electrochem. Soc., 2008, 155(3), K42-K49. [26] Liu S.H., Yu W.Y., Chen C.H., Lo A.Y., Hwang B.J., Chien S.H. et al., Fabrication and Characterization of Well-Dispersed and Highly Stable PtRu Nanoparticles on Carbon Mesoporous Material for Applications in Direct Methanol Fuel Cell, Chem. Mater., 2008, 20(4), 1622-1628. [27] Zarbin A.J.G., Bertholdo R., Oliveira M.A.F.C., Preparation, Characterization and Pyrolysis of Poly(Furfuryl Alcohol)/Porous Silica Glass Nanocomposites: Novel Route to Carbon Template, Carbon, 2002, 40(13), 2413-2422. [28] Yan Y., Yang H., Zhang F., Tu B., Zhao D., Surfactant-Templated Synthesis of 1D Single-Crystalline Polymer Nanostructures, Small, 2006, 2, 517-521. [29] Liu J., Wang H., Zhang L., Highly Dispersible Molecular Sieve Carbon Nanoparticles, Chem. Mater., 2004, 16, 4205-4207. [30] Shindo A., Izumino K., Structural Variation during Pyrolysis of Furfuryl Alcohol and Furfural-Furfuryl Alcohol Resins, Carbon, 1994, 32(7), 1233-1243. [31] Gonzalez R., Martinez R., Ortiz P., Polymerization of Furfuryl Alcohol with Trifluoroacetic Acid the Influence of Experimental Conditions, Makromol Chem., 1992, 193(1), 1-9. [32] Wang Z., Lu Z., Huang X., Xue R., Chen L., Chemical and Crystalline Structure Characterizations of Polyfurfuryl Alcohol Pyrolyzed at 600 °C, Carbon, 1998, 36(1-2), 51-59. [33] Li G., Lu Z., Huang B., Wang Z., Huang H., Xue R., et al. Raman Scattering Investigation of Carbons Obtained by Heat Treatment of a Polyfurfuryl Alcohol, Solid State Ionics., 1996, 89, 327-331. [34] Vickreva O., Kalinina O., Kumacheva E., Colloid Crystal Growth under Oscillatory Shear, Adv. Mater., 2000, 12(2), 110-112. [35] Cong H., Cao W., Colloidal Crystallization Induced by Capillary Force, Langmuir, 2003,19, 8177-8181. [36] Gu Z. Z., Horie R., Kubo S., Yamada Y., Fujishima A., Sato O., Fabrication of a Metal-Coated Three-Dimensionally Ordered Macroporous Film and its Application as a Refractive Index Sensor, Angew. Chem. Int. Ed., 2002, 41(7), 1153-1156. [37] Gu Z.Z., Kubo S., Fujishima A., Sato O., Infiltration of Colloidal Crystal with Nanoparticles Using Cappilary Forces: A Simple Technique for the Fabrication of Films with an Ordered Porous Structure, Appl. Phys. A., 2002, 74, 127-129. [38] Müller M., Zentel R., Maka T., Romanov S.G., Torres C.M.S., Photonic Crystal Films with High Refractive Index Contrast, Adv. Mater., 2000, 12(20), 1499-1503. [39] Velev O.D., Kaler E.W., Structured Porous Materials via Colloidal Crystal Templating: From Inorganic Oxides to Metals, Adv. Mater., 2000, 12(7), 531-534. [40] Zakhidov A.A., Khayrullin I.I., Baughman R.H., Iqbal Z., CVD Synthesis of Carbon-Based Metallic Photonic Crystals, Nanostruct. Mater., 1999, 12, 1089-1095. [41] Braun P.V., Wiltzius P., Electrochemically Grown Photonic Crystals, Nature, 1999, 402, 603-604. [42] Bresson F., Chen C.C., Chi G.C., Chen Y.W., Simplified Sedimentation Process for 3D Photonic Thick Layers-Bulk Crystals with a Stop-Band in the Visible Range, Appl. Surf. Sci., 2003, 217, 281-288. [43] Comoretto D., Grassi R., Marabelli F., Andreani L.C., Growth and Optical Studies of Opal Films as Three-Dimensional Photonic Crystals, Mater. Sci. Eng., C., 2003, 23, 61-65. [44] Gu Z. Z., Fujishima A., Sato O., Fabrication of High-Quality Opal Films with Controllable Thickness, Chem. Mater., 2002, 14(2), 760-765. [45] Bardosova M., Hodge P., Pach L., Pemble M.E., Smatko V., Tredgold R.H., et al. Synthetic Opals Made by the Langmuir-Blodgett Method, Thin Solid Films., 2003, 437, 276-279. [46] Velev O.D., Tessier P.M., Lenhoff A.M., Kaler E.W., A Class of Porous Metallic Nanostructures, Nature, 1999, 40, 548. [47] Velev O.D., Jede T.A., Lobo R.F., Lenhoff A.M., Microstructured Porous Silica Obtained via Colloidal Crystal Templates, Chem. Mater., 1998, 10, 3597-3602. [48] Bartlett P.N., Birkin P.R., Ghanem M.A., Electrochemical Deposition of Macroporous Platinum, Palladium and Cobalt Films Using Polystyrene Latex Sphere Templates, Chem. Commun., 2000, 1671-1672. [49] Romanov S.G., Maka T., Torres C.M.S., MuÈller M., Zentel R., Thin Film Photonic Crystals, Synth. Met., 2001, 116, 475-479. [50] Xu L., Zhou W.L., Frommen C., Baughman R.H., Zakhidov A.A., Malkinski L., et al. Electrodeposited Nickel and Gold Nanoscale Metal Meshes with Potentially Interesting Photonic Properties, Chem. Commun., 2000, 997-998. [51] Ni P., Dong P., Cheng B., Li X., Zhang D., Synthetic SiO2 Opals, Adv. Mater., 2001, 13(6), 437-441. [52] Carbajo M. C., Gómez A., Torralvo M. J., Enciso E., Macroporous Silica and Titania Obtained Using Poly[Styrene-co-(2-Hydroxyethyl Methacrylate)] as Template, J. Mater. Chem., 2002, 12, 2740-2746. [53] Tessier P.M., Velev O.D., Kalambur A.T., Lenhoff A.M., Rabolt J.F., Kaler E.W., Structured Metallic Films for Optical and Spectroscopic Applications via Colloidal Crystal Templating, Adv. Mater., 2001, 13, 396-400. [54] Sokolov S., Bell D., Stein A., Preparation and Characterization of Macroporous α-Alumina, J. Am. Ceram. Soc., 2003, 86(9), 1481-1486. [55] Comoretto D., Marabelli F., Soci C., Galli M., Pavarini E., Patrini M., et al. Morphology and Optical Properties of Bare and Polydiacetylenes-Infiltrated Opals, Synth. Met., 2003, 139, 633-636. [56] Jiang P., Cizeron J., Bertone J.F., Colvin V.L., Preparation of Macroporous Metal Films from Colloidal Crystals, J. Am. Ceram. Soc., 1999, 121, 7957-7958. [57] Stöber W., Fink A., Bohn E., Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range, J. Colloid Interface Sci., 1968, 26, 62-69. [58] Gregg S.J., Sing K.S.W., Adsorption Surface Area and Porosity, 2nd ed: Academic 1982. [59] González R., Rieumont J., Ortiz P., Mendoza L., Radilla J., González M., Influence of Water on the Cationic Polymerisation of 2-Ethenylfuran by Trifluoroacetic Acid in Methylene Dichloride, Macromol. Chem. Phys., 2001, 202, 710-718. [60] Filho C. D. A., Zarbin A.J.G., Porous Carbon Obtained by the Pyrolysis of TiO2/Poly(Furfuryl Alcohol) Nanocomposite: Preparation, Characterization and Utilization for Adsorption of Reactive Dyes from Aqueous Solution, J. Brazil. Chem. Soc., 2006, 17(6), 1151-1157. [61] Chuang I.S., Maciel G.E., Myers G.E., Carbon-13 NMR Study of Curing in Furfuryl Alcohol Resins, Macromolecules, 1984, 17, 1087-1090. [62] Principe M., Ortiz P., Martínez R., An NMR Study of Poly(Furfuryl Alcohol) Prepared with p-Toluenesulphonic Acid, Polym. Int., 1999, 48, 637-641. [63] Cançado L.G., Takai K., Enoki T., Endo M., Kim Y.A., Mizusaki H., et al. General Equation for the Determination of the Crystallite Size La of Nanographite by Raman Spectroscopy, Appl. Phys. Lett., 2006, 88, 163106. [64] Lai R., Gavalas G.R., ZSM-5 Membrane Synthesis with Organic-free Mixtures, Micropor. Mesopor. Mater., 2000, 38, 239-245.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10714-
dc.description.abstract本研究的主題分為二部分,第一個部分是使用2-呋喃甲醇做為合成玻璃碳的前趨物,並且在其聚合反應中,分別以鹽酸、磷酸和醋酸溶液做為反應的觸媒,觀察實驗中所使用的觸媒與不同的熱裂解溫度分別對2-呋喃甲醇的聚合程度及後續碳化結構的影響。結果顯示,酸的存在的確有助於2-呋喃甲醇的聚合,亦能減少碳化後結構的缺陷;而提高熱裂解溫度,可獲得結構較有序的玻璃碳。值得注意的是,2-呋喃甲醇於含有鹽酸的溶液中,具有強烈的聚合作用,可形成不具黏性的聚2-呋喃甲醇顆粒,其粒徑大小約為0.5-1μm,經過600℃碳化後,可轉變成具有微孔及高比表面積(297 m2/g)的玻璃碳球。反觀其他的系統則聚集成堅硬的塊狀物,僅具有極低的比表面積介於0.3-5.2 m2/g之間。 第二個部分則利用Stöber的方法分別合成280、450及680nm,具有單一分散的氧化矽微球,並使用離心自組裝的方式,探討不同的微球粒徑與離心轉速的實驗條件,對形成膠體晶體結構的排列規則性之影響。經由紫外-可見光光譜儀的量測得知,280nm的氧化矽微球,在2000rpm的高轉速離心時,所堆疊出具週期性規則排列的膠體晶體結構,其波長在632nm處產生了強烈的反射峰,而掃描式電子顯微鏡的觀察亦證實280、450和680nm的氧化矽微球,利用離心自組裝的方法確實可獲得高品質之膠體晶體。此外,後續將以氧化矽的膠體晶體為模版,利用離心力將2-呋喃甲醇填充於膠體晶體的孔隙中,再經過聚合反應及碳化等製程,最後利用氫氟酸蝕刻移除氧化矽膠體晶體的模版,即可獲得以玻璃碳為骨架,每個球形孔洞均被周圍六個相似的孔洞所包圍,而呈現六方密排陣列的規則孔洞結構,此即為玻璃碳之反蛋白石結構。zh_TW
dc.description.abstractThe topic of this study consists of two parts. First, furfuryl alcohol (FA) is used as a precursor for synthesis of glassy carbon. During the polymerization reaction, hydrochloric acid, phosphoric acid and acetic acid are respectively used as a catalyst to examine the degree of FA polymerization and the ensuing carbonized structure when catalyst chemistry and pyrolysis temperature are varied. Experiments revealed that the presence of acids does indeed promote polymerization of FA, leading to a reduced defect population. On the other hand, by increasing the pyrolysis temperature, one can achieve ordered glassy carbon with well-defined structure. This is particularly pronounced when the hydrochloric acid was used as a catalyzer, forming “nonstick” polyfurfuryl alcohol (PFA) particles with a diameter ca. 0.5-1 μm. The polymeric particles were then converted into microporous carbon spheres with a specific surface area of 297 m2/g when subjected to calcination at 600oC in argon atmosphere. On the contrary, FA in the rest of the catalyst systems showed aggregated form with a pronouncedly reduced specific surface areas ranging from 0.3 to 5.2 m2/g. The second part of this study is to synthesize monodispersed silica microspheres with mean particle sizes of 280, 450, and 680nm, respectively using Stöber method. Centrifugal self-assembly is then conducted to investigate the effect of experimental variables such as particle size and rotational speed of the centrifuge on the packing periodicity of the colloidal crystal structures. As shown by the UV-visible spectroscopy measurements, a strong reflection peak at a wavelength of 632nm is observed for the periodic colloidal crystal structure orderly formed by the silica microspheres with particle size of 280 nm at 2000 rpm of centrifugal speed. Moreover, it is also confirmed by scanning electron microscope (SEM) that high-quality colloidal crystal can indeed be obtained via the centrifugal self-assembly of silica microspheres with particle sizes of 280, 450, and 680nm. Furfuryl alcohol is subsequently infiltrated into the interstitial spacings of the silica colloidal crystal, which is serving as a template, followed by processes of polymerization and carbonization. The silica colloidal crystal template is then removed by hydrofluoric acid (HF) to acquire a well-ordered porous structure consisting of hexagonal close-packed arrays, with the glassy carbon as the backbone and each spherical pore surrounded by six adjacent similar pores. An inverse opal structure of glassy carbon has been prepared.en_US
dc.description.tableofcontents誌謝 I 中文摘要 II Abstract III Content Index IV Table Index VI Figure Index VII Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Objective 2 Chapter 2 Literature Review 4 2-1 Carbon materials prepared from pyrolysis of poly(furfuryl alcohol) 4 2-2 Fabrication methods for artificial opal via colloidal means 9 2-2.1 Gravitational sedimentation 9 2-2.2 Centrifugal method 10 2-2.3 Filtration 11 2-2.4 Heat convective flow method 12 2-2.5 Electrophoretic deposition method 14 2-2.6 Physical confinement method 14 2-3 Preparation of porous structures 16 2-3.1 Filtration 16 2-3.2 Dipping 16 2-3.3 Nanocrystal infilling 17 2-3.4 Chemical vapor deposition (CVD) 17 2-3.5 Electrochemical deposition 18 Chapter 3 Experimental details 22 3-1 Reagents and materials 22 3-2 Experimental procedures 24 3-2.1 Preparation of carbon materials 24 3-2.2 Fabrication of silica opal structure 25 3-2.3 Preparation of inverse opal structure 27 3-3 Analytical instruments 28 3-3.1 Fourier transform infrared spectrometer (FTIR) 28 3-3.2 Nuclear Magnetic Resonance spectrometer (NMR) 28 3-3.3 UV-Visible spectrophotometer (UV-Vis) 29 3-3.4 X-ray powder diffractometer (XRD) 30 3-3.5 Raman scattering spectrometer (RSS) 30 3-3.6 Field emission scanning electron microscope (FESEM) 31 3-3.7 Surface area and porosity analyzer 32 3-3.8 Particle size and zeta potential analyzer 32 3-3.9 Thermogravimetry/Differential thermal analysis thermoanalyzer (TG/DTA) 33 3-3.10 Contact angle (CA) 34 Chapter 4 Results and Discussion 35 4-1 Carbon prepared from pyrolysis of polyfurfuryl alcohol 35 4-1.1 Chemical structure 35 4-1.2 Thermal behavior 39 4-1.3 Surface morphology 40 4-1.4 BET surface area and pore size 43 4-1.5 Crystalline structure 45 4-2 Fabrication of synthetic opals 50 4-2.1 Synthesis of silica spheres 50 4-2.2 Preparation of opal structure 51 4-2.2.1 Contact angle analysis (CA) 51 4-2.2.2 Thermogravimetry/Differential thermal analysis (TG/DTA) 52 4-2.2.3 Microstructure of the colloidal crystal 53 4-2.2.4 Optical characteristic 57 4-3 Preparation of inverse opal structure 59 4-3.1 Microstructure 59 4-3.2 BET surface area and pore size 63 Chapter 5 Conclusions 67 Reference 69 About the Author 74 Publication List 75zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.subjectfurfuryl alcoholen_US
dc.subject2-呋喃甲醇zh_TW
dc.subjectglassy carbonen_US
dc.subjectself-assemblyen_US
dc.subjectcolloidal crystalen_US
dc.subjectopalen_US
dc.subject玻璃碳zh_TW
dc.subject自組裝zh_TW
dc.subject膠體晶體zh_TW
dc.subject蛋白石結構zh_TW
dc.subject反蛋白石結構zh_TW
dc.title玻璃碳的合成與形成規則孔洞碳膜之研究zh_TW
dc.titleSynthesis of Glassy Carbons and Preparation of Carbon Membranes with Ordered Porosityen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:材料科學與工程學系
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.