Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10717
標題: 可重工於觸控面板之液態光學膠物理性質探討
Investigation on physical properties of liquid optically clear adhesive re-workable for touch panels
作者: 廖晁琪
Liao, Chao-Chi
關鍵字: Touch panel;觸控螢幕;Re-workable;Liquid optically clear adhesive (LOCA);可重工性;液態光學膠
出版社: 材料科學與工程學系所
引用: [1] M. Grosser, U. Schmid, “The impact of sputter conditions on the microstructure and on the resistivity of tantalum thin films,” Thin Solid Films, vol. 517, pp. 4493-4496, Dec. 2008. [2] C. T. Cruz, A. M. Galván, A.M.López-Beltrán, M.Gracia-Jiménez, “Effects of air annealing on the optical, electrical, and structural properties of indium-tin oxide thin films,” Thin Solid Films, vol. 517, pp. 4615-4620, Feb. 2009. [3] C. B. Kowollik, “Acrylate free radical polymerization: from mechanism to polymer design,” J. Macromol. Rapid Commun., vol. 30, pp.1961-1963, Dec. 2009. [4] R. S. Jagadish, B. Raj, P. Srinivas, “Chemical modification of polypropylene with diisocyanates for improved gas barrier and mechanical properties,” Adv. Polymer Technol., vol. 28, pp. 233-245, Dec. 2009. [5] P. Fabbri, M. Messori, M. Toselli, P. Veronesi, J. Rocha, F.Pilati, “Enhancing the scratch resistance of polycarbonate with poly(ethylene oxide)-silica hybrid coatings,” Adv. Polymer Technol., vol. 27, pp. 117-126, Feb. 2009. [6] M. F. Diniz, R. C. L. Dutra, G. P. Thim, D. Dibbern-Brunelli, “Thermal curing of glass-epoxy prepregs by luminescence spectroscopy,” J. Appl. Polymer Sci., vol. 117, pp. 664-671, Jul. 2010. [7] P. A. Sreekumar, P. S.Thomas, P.Jyotishkumar, S.Thomas, “Mechanical properties of poly(styrene-co-acrylonitrile)-modified epoxy resin/glass fiber composites,” J. Appl. Polymer Sci., vol. 110, pp. 3431-3438, Feb. 2008. [8] C. M. Zquez, R. Tayouo, C. Joly-duhamel, B. Boutenvin, “UV-Curableb bismaleimides containing poly(dimethylsiloxane): Use as hydrophobic agent,” J. Polymer Sci.:vol. 48, pp. 2123-2134, Feb. 2010. [9] Y. Han, D. Kim, J. Cho, Y. Beag, S. Koh, “Study of the substrate treatment effect on initial growth of indium tin-oxide films on polymer substrate using in situ conductance measurement,” Thin Solid Films, vol. 496, pp. 58-63, Feb. 2006. [10] F. Ferrieu, J. P. Piel, J. L. Stehle, “Physical surface adsorption and molecular surface fractal analysis (MFSA) detected with spectroscopic ellipsometry,” Appl. Surf. Sci., vol. 256, pp. S96-S100, Sep. 2009. [11] F. L. Ng, J. Wei, F. K. Lai, K. L. Goh, “Metallic thin film depth measurements by X-ray microanalysis,” Appl. Surf. Sci., vol. 252, pp. 3972-3976, Mar. 2006. [12] G. Gruner, “Carbon nanotube films for transparent and plastic electronics,” J. Mater. Chem., vol. 16, pp. 3533-3539, May. 2006. [13] S. L. Rosen, “Type of polymers,” in Fundamental principles of polymeric material, 2nd ed. New York: Wiley Interscience, 1993, ch. 2, pp. 9-18. [14] S .L. Rosen, “Bonding in polymers,” in Fundamental principles of polymeric material, 2nd ed. New York: Wiley Interscience, 1993, ch. 3, pp. 28-31. [15] S. L. Rosen, “Stereoisomerism,” in Fundamental principles of polymeric material, 2nd ed. New York: Wiley Interscience, 1993, ch. 4, pp. 32-38. [16] S. L. Rosen, “Characterization of molecular,” in Fundamental principles of polymeric material, 2nd ed. New York: Wiley Interscience, 1993, ch. 6, pp53-81. [17] S. L. Rosen, “Polymer solubility and solutions,” in Fundamental principles of polymeric material, 2nd ed. New York: Wiley Interscience, 1993, ch. 7, pp. 82-95. [18] 朱誠身,「振動光譜與電子光譜」,聚合物結構分析,第二版,北京市,科學出版社,2005,第二章,第17-99頁。 [19] 張豐志,「光硬化接著劑簡介」,應用高分子手冊,第一版,台北市,五南文化廣場,2003,第三章,第57-79頁。 [20] 張豐志,「聚胺酯-單體、化學原理、合成與產品」,應用高分子手,第一版,台北市,五南文化廣場,2003,第十八章,第437-475頁。 [21] 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,「原子結構與鍵結」,工程材料科學,第二版,台北市,全華科技圖書股份有限公司,1999,第三章,第61-89頁。 [22] 汪建民,「紅外線光譜分析」,材料分析,第五版,新竹縣,中國材料科學學會,2006,第十八章,第501-522頁。 [23] 楊明輝,「小型觸控面板的透明電極設計」,工業材料雜誌,2009年三月,第267期,第153-160頁。 [24] 楊明輝,「觸控面板的材料與最近動向」,工業材料雜誌,2009年六月,第270期,第181-187頁。 [25] 楊明輝,「觸控面板用透明導電膜材料」,工業材料雜誌,2009年二月,第266期,第137-145頁。 [26] 劉秀琴、張志祥,「觸控面板應用新商機與透明導電膜材料的近況發展」,工業材料雜誌,2008年三月,第255期,第201-214頁。 [27] 黃桂武,「有機薄膜電晶體元件與關鍵材料技術」,工業材料雜誌,2009年8月,第272期,第62-75頁。 [28] 黃天榮、邱佑宗、張志祥,「快速精準設計理想的高分子新材料」,工業材料雜誌,2009年四月,第268期,第100-106頁
摘要: 
本研究之主要目的為探討一種可重工的液態光學膠,此種液態光學膠可應用在現今顯示器之觸控面板產品,其主要之功用是用來貼合觸控螢幕與鏡片或液晶顯示模組等光學級產品的一種膠材,此種膠材最主要之優勢在於可重工性,有別於以往使用的光學級感壓膠。因為目前顯示器的貼合製程如:觸控螢幕、鏡片等產品,製程多以光學等級的感壓膠來做為貼合的一種方式,但因為此種感壓膠的初期黏性較強,感壓膠與觸控螢幕經貼合後的不良品不易進行重工;且因其結構為無基材的感壓膠,所以於裁切製程時,會因膠材結構挺性不足之原因,容易有膠材脫膠的現象產生;再者,因鏡片與觸控面板貼合後,經加壓烘烤完畢時,容易有氣泡或是有凹痕發生等貼膠製程上的問題。
因此本論文聚焦於探討可減少氣泡、無裁切製程、提升貼合良率的一種〝液態光學膠〞,此膠材最大優勢在於經紫外光照射固化後,膠材仍可重工,且因為是屬於液態之膠材,所以不須經過裁切製程,即可完成貼合之動作,另於貼合前可以先經過脫泡製程,因此可減少氣泡問題,大幅提高製程良率,而達到減少觸控面板的耗損。除了研究液態光學膠可重工原因外,經由信賴性實驗結果可發現穿透率較感壓膠提升1 %以上,霧度減少1.4 %,色度則較感壓膠更趨近於白色光,不易有黃化現象。因此少了感壓膠貼合產生的氣泡問題及裁切製程,改由可重工之液態光學膠取代,觸控面板產品貼合製程可從以往85 %的良率提升至95 %以上,進而提升了製程產能。

This thesis focuses on the feasibility study of a re-workable liquid optically clear adhesive (LOCA) for touch panel assembly process which integrates the touch panel, cover glass or liquid crystal module via the bonding function. The primary advantage of LOCA comes from its re-workable property which is different from the traditional pressure-sensitive adhesive (PSA) for this application. Because the traditional PSA has strong tack adhesion force in the beginning stage, it is hard to disassemble and rework on it once some defective panels are found. Moreover, the PSA belongs to a non-base film structure which will easily result in the degummed problem during the die-cut process. The bubble or some defected imprints problem easily occur and degrade the visual performance when using the traditional PSA to laminate the over glass and touch panel. These make the LOCA gradually replace the traditional PSA in the touch panel integration process.
We have investigated a type of LOCA with enhanced bonding yield, while reducing the presence of bubbles without any cutting processes. The greatest advantage offered by this adhesive is its ability to be heavily machine-processed even after UV curing. Since the adhesive remains in a liquid state, the bonding action can be completed without any cutting process. Furthermore, the adhesive would undergo a bubble-removal process prior to bonding, thus increasing yield significantly, whilst maintaining minimal wear and tear on a touch panel. Aside from the versatility of this LOCA, reliability studies have shown that, compared to PSA, optical transmission is 1% higher and turbidity is reduced by 1.4%, resulting in a more whitened appearance and reduces the chances of ‘yellowing'. Therefore, without issues such as presence of bubbles and the need in cutting processes, the process yield can increase from 85% to 95% by utilizing the LOCA in touch-panel production
URI: http://hdl.handle.net/11455/10717
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.