Please use this identifier to cite or link to this item:
標題: Gallol-PEG分散劑對水系奈米鎳懸浮體之流變行為研究
Effect of Gallol-PEG Surfactants on Rheological Behaviors of Aqueous Nickel Nanoparticle Suspensions
作者: 陳俊男
Chen, Chun-Nan
關鍵字: Nickel;鎳;Nanoparticle;Surfactant;Adsorbed Layer;Rheology;奈米粒子;界面活性劑;吸附層;流變學
出版社: 材料科學與工程學系所
引用: [1] A. P. Weber, M. Seipenbusch and G. Kasper, “Application of aerosol techniques to study the catalytic formation of methane on gasborne nickel nanoparticles,” J. Phys. Chem. A, 105 8958-8963 (2001). [2] Ö. Metin, V. Mazumder, S. Özkar and S. Sun, “Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane,” J. Am. Chem. Soc., 132 1468-1469 (2010). [3] A.K. Shukla, S. Venugopalan and B. Hariprakash, “Nickel-based rechargeable batteries,” J. Power Sources, 100 125-148 (2001). [4] J.-Y. Lee, J.-H. Lee, S.-H. Hong, Y. K. Lee and J.-Y. Choi, “Coating BaTiO3 nanolayers on spherical Ni powders for multilayer ceramic capacitors,” Adv. Mater., 15 [19] 1655-1658 (2003). [5] D. H. Im, S. H. Hyun, S. Y. Park, B. Y. Lee and Y. H. Kim, “Preparation of high dispersed nickel pastes for thick film electrodes,” J. Mater. Sci., 41 6425-6430 (2006). [6] Y. Li and C.P. Wong, “Recent advances of conductive adhesives as a lead-free alternative in electronic packing: Materials, processing, reliability and applications,” Mater. Sci. Eng. R., 51 1-35 (2006). [7] Z. Libor and Q. Zhang, “The synthesis of nickel nanoparticles with controlled morphology and SiO2/Ni core-shell structures,” Mater. Chem. Phys., 114 902-907 (2009). [8] S.N. Piramanayagam, H.B. Zhao, M. Dewi and B.C. Lim, “Investigations on annealed Ni-P in Al-Mg/Ni-P substrates as soft underlayer for perpendicular recording media,” J. Magn. Magn. Mater., 287 271-275 (2005). [9] D. J. Shanefield, Organic Additives and Ceramic Processing, Kluwer Academic Publishers, Norwell, Massachusetts, 1995. [10] R. J. Pugh and L. Bergström, Surface and Colloid Chemistry in Advanced Ceramics Processing, Marcel Dekker, Inc., New York, 1994. [11] O. J. Rojas, P. M. Claesson, D. Muller and R. D. Neuman, “The effect of salt concentration on adsorption of low-charge-density polyelectrolytes and interactions between polyelectrolyte-coated surfaces” J. Colloid Interface Sci., 205 77-88 (1998). [12] A. R. Studart, E. Amstad and L. J. Gauckler, “Colloidal stabilization of nanoparticles in concentrated suspensions,” Langmuir, 23 1081-1090 (2007). [13] M. J. Vold, “The effect of adsorption on the van der Waals interaction of spherical colloidal particles,” J. Colloid Sci., 16 1-12 (1961). [14] 吳裕慶,機械材料學,大中國圖書公司,1998。 [15] E.G. Baburaj, K. T. Hubert and F.H. S. Froes, “Preparation of Ni powder by mechanochemical process,” J. Alloy. Compd., 257 146-149 (1997). [16] H. Gleiter, “Nanocrystalline materials,” Prog. Mater. Sci., 33 223-315 (1989). [17] I.T.H. Chang and Z. Ren, “Simple processing method and characterisation of nanosized metal powders,” Mater. Sci. Eng. A, 375-377 66-71 (2004). [18] Z.-M. Qu, “Production of nanometer nickel powder by carbonylation,” Powder Metall. Ind., 13 [5] 16-19 (2003). [19] K. H. Kim, Y. B. Lee, S. G. Lee, H.C. Park and S. S. Park, “Preparation of fine nickel powders in aqueous solutionunder wet chemical process,” Mater. Sci. Eng. A, 381 337-342 (2004). [20] K. Yu, D. J. Kim, H. S. Chung and H. Liang, “Dispersed rodlike nickel powder synthesized by modified polyol process,” Mater. Lett., 57 3992-3997 (2003). [21] D.-H. Chen and C.-H. Hsieh, “Synthesis of nickel nanoparticles in aqueous cationic surfactant solutions,” J. Mater. Chem., 12 2412-2415 (2002). [22] X.-M. Ni, X.-B. Su, Z.-P. Yang and H.-G. Zheng, “The preparation of nickel nanorods in water-in-oil microemulsion,” J. Cryst. Growth, 252 612-617 (2003). [23] M. T. Reetz and W. Helbig, “Size-selective synthesis of nanostructured transition metal clusters,” J. Am. Chem. Soc., 116 7401-7402 (1994). [24] M. P. Zach and R. M. Penner, “Nanocrystalline nickel nanoparticles,” Adv. Mater., 12 [12] 878-883 (2000). [25] W.-N. Wang, Y. Itoh, I. W. Lenggoro and K. Okuyama, “Nickel and nickel oxide nanoparticles prepared from nickel nitrate hexahydrate by a low pressure spray pyrolysis,” Mater. Sci. Eng. B, 111 69-76 (2004). [26] B. Xia, I. W. Lenggoro and K. Okuyama, “Preparation of nickel powders by spray pyrolysis of nickel formate,” J. Am. Ceram. Soc., 84 [7] 1425-1432 (2001). [27] F. Wang, Z. Zhang and Z. Chang, “Effects of magnetic field on the morphology of nickel nanocrystals prepared by gamma-irradiation in aqueous solutions,” Mater. Lett., 55 27-29 (2002). [28] L. He, R. Zhou, L. Xin, O.F. Adeleke and C. Pan, “Synthesis of nickel nano-particles by EB irradiation,” J. Radiat. Res. Radiat. Process., 23 [1] 6-10 (2005). [29] A. J. Sánchez-Herencia, A. J. Millán, M. I. Nieto and R. Moreno, “Aqueous colloidal processing of nickel powder,” Acta Mater., 49 645-651 (2001). [30] N. Hernández, A. J. Sánchez-Herencia and R. Moreno, “Forming of nickel compacts by a colloidal filtration route,” Acta Mater., 53 919-925 (2005). [31] N. Hernández, R. Moreno, A. J. Sánchez-Herencia and J. L. G. Fierro, “Surface behavior of nickel powders in aqueous suspensions,” J. Phys. Chem. B, 109 4470-4474 (2005). [32] D.-H. Im, S.-H. Hyun, S.-Y. Park, B.-Y. Lee and Y.-H. Kim, “Preparation of Ni paste using binary powder mixture for thick film electrodes,” Mater. Chem. Phys., 96 228-233 (2006). [33] E.H. Lee, M.K. Lee and C.K. Rhee, “Preparation of stable dispersions of Ni nanoparticles using a polymeric dispersant in water,” Mater. Sci. Eng. A, 449-451 765-768 (2007). [34] S. Lee, U. Paik, S.-M. Yoon and J.-Y. Choi, “Dispersant-ethyl cellulose binder interactions at the Ni particle-dihydroterpineol interface,” J. Am. Ceram. Soc., 89 [10] 3050-3055 (2006). [35] D. H. Im, S. Y. Park and S. H. Hyun, “Aqueous dispersion stability of nickel powders prepared by a chemical reduction method,” J. Mater. Sci., 39 3629-3633 (2004). [36] I.N. Bhattacharya, D. Panda and P. Bandopadhyay, “Rheological behaviour of nickel laterite suspensions,” Int. J. Miner. Process., 53 251–263 (1998). [37] B. Klein and D.J. Hallbom, “Modifying the rheology of nickel laterite suspensions,” Miner. Eng., 15 745-749 (2002). [38] A. R. Studart, E. Amstad, M. Antoni and L. J. Gauckler, “Rheology of concentrated suspensions containing weakly attractive alumina nanoparticles,” J. Am. Ceram. Soc., 89 [8] 2418-2425 (2006). [39] J. W. Goodwin, Colloids and Interfaces with Surface and Polymers: An Introduction, John Wiley & Sons Ltd, Chichester, 2004. [40] J. S. Reed, Principles of Ceramics Processing, 2nd edition, John Wiley & Sons, Inc., New York, 1995. [41] M. A. Rao, Rheology of Fluid and Semisolid Foods Principles and Applications, 2nd edition, Springer, New York, 2007. [42] D. J. Shaw, Introduction to colloid and surface chemistry, 4th edition, Butterworth-Heinemann Ltd, Oxford, 1992. [43] D. W. J. Osmond, B. Vincent and F. A. Waite, “The van der Waals attraction between colloid particles having adsorbed layer. I. A reappraisal of the "Vold effect",” J. Colloid Interface Sci., 42 262-269 (1973). [44] M. N. Rahaman, Ceramic processing, Taylor & Francis Group, LLC, Boca Raton, 2007. [45] J. A. Lewis, “Colloidal processing of ceramics,” J. Am. Ceram. Soc., 83 [10] 2341-2359 (2000). [46] B. Vincent, P. F. Luckham and F. A. Waite, “The effect of free polymer on the stability of sterically stabilized dispersions,” J. Colloid Interface Sci., 73 508-521 (1980). [47] B. Vincent, J. Edwards, S. Emmett and A. Jones, “Depletion flocculation in dispersions of sterically-stabilised particles (“soft spheres”),” Colloids surf., 18 261-281 (1986). [48] Z. Chen, Y.-M. Liu, S. Yang, B.-A. Song, G.-F. Xu, P. S. Bhadury, L.-H. Jin, D.-Y. Hu, F. Liu, W. Xue and X. Zhou, “Studies on the chemical constituents and anticancer activity of Saxifraga stolonifera (L) Meeb,” Bioorg. Med. Chem., 16 1337-1344 (2008). [49] B. C. Anderson, S. M. Cox, P. D. Bloom, V. V. Sheares and S. K. Mallapragada, “Synthesis and characterization of diblock and gel-forming pentablock copolymers of tertiary amine methacrylates, poly(ethylene glycol), and poly(propylene glycol),” Macromolecules, 36 1670-1676 (2003). [50] P. Papaphilippou, L. Loizou, N. C. Popa, A. Han, L. Vekas, A. Odysseos and T. Krasia-Christoforou, “Superparamagnetic hybrid micelles, based on iron oxide nanoparticles and well-defined diblock copolymers possessing β-ketoester functionalities,” Biomacromolecules, 10 2662-2671 (2009). [51] Y. Chen, L. Ying, W. Yu, E. T. Kang and K. G. Neoh, “Poly(vinylidene fluoride) with grafted poly(ethylene glycol) side chains via the RAFT-mediated process and pore size control of the copolymer membranes,” Macromolecules, 36 9451-9457 (2003). [52] H. Lin, T. Kai, B. D. Freeman, S. Kalakkunnath and D. S. Kalika, “The effect of cross-linking on gas permeability in cross-linked poly(ethylene glycol diacrylate),” Macromolecules, 38 8381-8393 (2005). [53] D. Neugebauer, M. Theis, T. Pakula, G. Wegner and K. Matyjaszewski, “Densely heterografted brush macromolecules with crystallizable grafts. synthesis and bulk properties,” Macromolecules, 39 584-593 (2006). [54] L.-L. Lu, Y.-H. Li and X.-Y. Lu, “Kinetic study of the complexation of gallic acid with Fe(II),” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 74 829–834 (2009). [55] S. Fally, M. Carleer and A. C. Vandaele, “UV Fourier transform absorption cross sections of benzene, toluene, meta-, ortho-, and para-xylene,” J. Quant. Spectrosc. Radiat. Transf., 110 766-782 (2009). [56] R. T. Morrison and R. N. Boyd, Organic Chemistry, 6th edition, Prentice Hall, New Jersey, 1992. [57] Z. Libor and Q. Zhang, “The synthesis of nickel nanoparticles with controlled morphology and SiO2/Ni core-shell structures,” Mater. Chem. Phys., 114 902-907 (2009). [58] Y. Zhao, Z. Zhu and Q.-K. Zhuang, “The relationship of spherical nano-Ni(OH)2 microstructure with its voltammetric behavior,” J. Solid State Electrochem., 10 914-919 (2006). [59] A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, 6th edition, John Wiley & Sons, Inc., New York, 1997. [60] P. C. Hiemenz and R. Rajagopalan, Principles of Colloid and Surface Chemistry, 3rd edition, Marcel Dekker, Inc., New York, 1997. [61] J.-H. Jean and H.-R. Wang, “Dispersion of aqueous barium titanate suspensions with ammonium salt of poly(methacrylic acid),” J. Am. Ceram. Soc., 81 [6] 1589-1599 (1998). [62] I. Mohammed-Ziegler and F. Billes, “Vibrational spectroscopic calculations on pyrogallol and gallic acid,” Theochem-J. Mol. Struct., 618 259-265 (2002). [63] C. Oh, C. D. Ki, J. Y. Chang and S.-G. Oh, “Preparation of PEG-grafted silica particles using emulsion method,” Mater. Lett., 59 929-933 (2005). [64] C. Oh, Y.-G. Lee, T.-S. Choi, C.-U. Jon and S.-G. Oh, “Facile synthesis of PEG-silica hybrid particles using one-step sol-gel reaction in aqueous solution,” Colloid Surf. A, 349 145-150 (2009). [65] W. Wang, Q. Chen, C. Jiang, D. Yang, X. Liu and S. Xu, “One-step synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-(N-vinyl-2-pyrrolidone),” Colloid Surf. A, 301 73-79 (2007). [66] W. J. Tseng and K.-C. Lin, “Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions,” Mater. Sci. Eng. A, 355 186-192 (2003). [67] E. Tamjid and B. H. Guenther, “Rheology and colloidal structure of silver nanoparticles dispersed in diethylene glycol,” Powder Technol., 197 49-53 (2010). [68] W. Y. Shih, W.-H. Shih and I. A. Aksay, “Elastic and yield behavior of strongly flocculated colloids,” J. Am. Ceram. Soc., 82 [3] 616-624 (1999). [69] W. J. Tseng and C. H. Wu, “Aggregation, rheology and electrophoretic packing structure of aqueous Al2O3 nanoparticle suspensions,” Acta Mater., 50 3757-3766 (2002). [70] S. Tang, J. M. Preece, C. M. McFarlane and Z. Zhang, “Fractal morphology and breakage of DLCA and RLCA aggregates,” J. Colloid Interface Sci., 221 114-123 (2000). [71] R. Jullien and P. Meakin, “Simple Models for the restructuring of three-dimensional ballistic aggregates,” J. Colloid Interface Sci., 127 265-272 (1989). [72] C.-N. Chen and W. J. Tseng, “Effect of polymeric surfactant on particulate structure in nickel-terpineol suspensions,” J. Mater. Sci., 39 3471-3473 (2004). [73] C. Allain, M. Cloitre and M. Wafra, “Aggregation and sedimentation in colloidal suspensions,” Phys. Rev. Lett., 74 [8] 1478-1481 (1995). [74] K. D. Ziegel, “Role of the interface in mechanical energy dissipation of composites,” J. Colloid Interface Sci., 29 72-80 (1969). [75] T. Kitano, T. Kataoka and T. Shirota, “An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers,” Rheol. Acta 20 207-209 (1981). [76] R. K. McGeary, “Mechanical packing of spherical particles,” J. Am. Ceram. Soc., 44 [10] 513-522 (1961). [77] J. H. Song and J. R. G. Evans, “Flocculation after injection molding in ceramic suspensions,” J. Mater. Res., 9 [9] 2386-2397 (1994). [78] D.-M. Liu, “Particle packing and rheological property of highly-concentrated ceramic suspensions: ψm determination and viscosity prediction,” J. Mater. Sci., 35 5503-5507 (2000). [79] W. J. Tseng and C.-N. Chen, “Dispersion and rheology of nickel nanoparticle inks,” J. Mater. Sci., 41 1213-1219 (2006). [80] W. J. Tseng and C.-N. Chen, “Effect of polymeric dispersant on rheological behavior of nickel terpineol suspensions,” Mater. Sci. Eng. A, 347 145-153 (2003). [81] J. Vial and A. Carré, “Calculation of Hamaker constant and surface energy of polymers by a simple group contribution method,” Int. J. Adhes. Adhes., 11 [3] 140-143 (1991). [82] M. D. Foster and S. F. Thames, “Chlorinated maleinized guayule rubber as an adhesion promoter for polypropylene,” J. Coat. Technol., 71 91-99 (1999). [83] N.V. Churaev, “Contact angles and surface forces,” Adv. Colloid Interface Sci., 58 87-118 (1995). [84] J. N. Israelachvili, Intermolecular & Surface Forces, 2nd edition, Academic Press, London, 1991 [85] D. M. Lipkin, J. N. Israelachvili and D. R. Clarke, “Estimating the metal-ceramic van der Waals adhesion energy,” Philos. Mag. A, 76 [4] 715-728 (1997).
就添加不同尾端鏈結長度的Gallol-PEG界面活性劑的鎳漿料而言,固定漿料的固含量(φ)在20 vol.%,添加Gallol-PEG550的漿料黏度在剪切速率範圍 γ = 1-1000 s-1都低於未添加分散劑鎳漿料,而添加Gallol-PEG1100的漿料黏度也類似。將不同固含量(φ= 10-40 vol.%)的水系奈米鎳懸浮體,個別添加2 wt.%的Gallol-PEG550作為分散劑時,在剪切速率範圍 γ = 1-1000 s-1,其流變行為都呈剪切變薄特徵。吾人以既有經驗模式計算懸浮體的降伏強度,並理論預測其碎形次元(Df)約在2.05-2.11,顯示反應極限凝塊聚集(RCLA)機制。
吾人進一步利用Vold模式評估支配粒子間的凡得瓦爾吸引力,並比較前述不同Gallol-PEG分子與鎳粒子間之吸引位能的關係。發現材料的Hamaker常數和吸附層厚度明顯影響粒子間的吸引位能值。在僅考慮凡得瓦爾吸引位能和靜電排斥位能的情況,吾人估計鎳膠體粒子間之總位能與固含量間之關係,在所用之分散劑中,添加Gallol-PEG1100的漿料之總位能具較小的吸引力(較大的排斥力),預期將對鎳膠體系統提供最佳的穩定分散性。以實驗驗證,在固含量40 vol.%時,添加Gallol-PEG1100的漿料黏度卻稍大於添加Gallol-PEG 550情況,推測可能是帶有較厚吸附層的粒子,在極小的面分離距離內難以剪切流動,而導致漿料黏度上升所致。

Nickel nanoparticles disperse in deionized water and tailor-made Gallol-PEG molecules are added as a dispersant for this research. Gallol-PEG surfactants were synthesized through the esterification between gallic acid and poly(ethylene glycol) methyl ether (PEG-Me), and the chain length of the tail group structure can be adjusted by varying the molecular weight of monomer. Analysis from Zeta potential confirms that the adsorption happens between the anchoring head group and the surface of the Nickel particles. Moreover the adsorption isotherms illustrate that Gallol-PEG molecules with different molecular weights all show that the adsorption behaves as Langmuir-type monolayer on the particle surface, and the maximum saturated adsorption and the surface coverage of surfactants are determined.
In terms of Ni inks with different tail length of Gallol-PEG surfactants, the viscosity of ink containing Gallol-PEG550 is less than the one without a surfactant over a shear-rate range 1-1000 s-1 at 20 vol. % solid concentration of the inks. The viscosity of ink within Gallol-PEG1100 shows similar results as well. The rheological behavior of aqueous nickel nanoparticle suspensions show shear thinning phenomena with different solid concentrations φ = 10-40 vol.%) and with 2 wt.% Gallol-PEG550 over a shear-rate range 1-1000 s-1. Different empirical models were used to evaluate the yield stress of the suspension, giving a fractal dimension (Df) of around 2.05-2.11. This indicates that the mechanism is dominated by the reaction-limited cluster-cluster aggregation (RCLA).
The Vold model was used to investigate the van der Waald force between particles and to determine the relationship between different Gallol-PEG molecules and Nickel particles. The Hamaker constant of materials and the adsorbed layer thickness significantly affect the attractive potential between particles. In view of the van der Waals attractive potential and electrostatic repulsive potential, the relationships between the total potential energy of interparticles and solid concentrations were estimated. The total potential of the ink containing Gallol-PEG1100 has smaller attractive force among all dispersant, expected to provide enough dispersive stability for suspension system. Under a solid concentration of 40 vol.%, the ink viscosity with Gallol-PEG1100 is greater than that with Gallol-PEG550, to presume that the particle with thicker adsorbed layer at the extreme small separated distance between nanoparticles is hardly to shear flow, in order to increase the viscosity of the ink.
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.