Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10725
標題: 氣相傳輸法合成銻摻雜碲化鍺一維奈米結構與其相變化記憶體特性的探討
Synthesis of Sb-doped GeTe one-dimensional nanostructures by vapor transport process and their memory-switching behavior
作者: 陳仕憲
Chen, Shih-Hsien
關鍵字: 相變化記憶體;PRAM;奈米線;碲化鍺;氣相傳輸法;nanowire;GeTe;VLS
出版社: 材料科學與工程學系所
引用: [1] http://www.computer.org/portal/web/computingnow/archive/news045 [2] Y. C. Chen et al., “Ultra-Thin Phase-Change Bridge Memory Device Using GeSb”, IEEE(2006) [3] Lin, Ke-Chin et al., “TaN Cup Formation by CMP for Cross-Spacered Phase Change Memory”, 2007 [4] I. G. Baek et al., “Highly Scalable Non-volatile Resistive Memory using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses”, IEEE(2004) [5] Chun-Chieh Lin et al., IEEE ELECTRON DEVICE LETTERS, 27, 9,(2006) [6] 葉林秀、李佳謀、徐明豐、吳德和,磁阻式隨機存取記憶體技術的發 展—現在與未來 [7] 王子銘,MRAM 簡介及未來發展趨勢 [8] B. H.Park, NATURE ,401,682-684 [9] Bi-Weekly News, 2005.09.01 [10] 非揮發性FRAM記憶技術原理及其應用初探,Ramtron [11] E. Varesi, “Advances in Phase Change Memory Technology” [12] Matthias Wuttig and Noboru Yamada, Nature Materials 6, 824–832 (2007) [13] Stefan Lai, Tyler Lowrey , “OUM - A 180 nm Nonvolatile Memory Cell Element Technology For Stand Alone and Embedded Applications” , 2001 [14] Ovonyx, Inc., “Technical Presentation,” http://www.ovonyx.com/, 1999 [15] Stanford R. Ovshinsky, Phys. Rev. Lett., 21, 20(1968) [16] Sumio Hosaka, Microelectronic Engineering, 73–74, 736–740(2004) [17] http://www.webelements.com [18] Takeo Ohta et al., “Phase change memory: rewritable optical disks and electronic non-volatile memories”, 2004 [19] Takeo Ohta et al., “Phase-change optical disk and ultra short-pulse laser response for furture advancement”, 2001 [20] Yung-Sung Hsu et al., Jpn. J. Appl. Phys., Vol. 47, No. 7 (2008) [21] Yung-Sung Hsu et al., “Influence of Al doping on the phase change kinetics of eutectic Sb70Te30 recording film”, 2006 [22] Yung-Sung Hsu et al., IEEE TRANSACTIONS ON MAGNETICS, 43, 2(2007) [23] Yung-Chiun HER et al., Jpn. J. Appl. Phys., Vol. 42 ,pp. 804–808(2003) [24] J. feng et al., Appl. Phys. A 87, 57–62 (2007) [25] Suk Min KIM et al., Jpn. J. Appl. Phys., Vol. 44, No. 6, 2005, pp. L 208–L 210 [26] Jozef Bicerano et al., Journal of Non-Crystalline Solids 74, 75-84 (1985) [27] 劉應達,國立中興大學,碩士論文(2007) [28] Sung-Min Yoon et al., Applied Surface Science 254, 316–320(2007) [29] Herman J. Borg., Jpn. J. Appl. Phys., Vol. 40, pp1592-1597 (2001) [30] 非揮發性記憶體(NVM), 高明哲,奈米電子元件技術組,電子所/工研院 [31] Minsoo Youm et al., Microelectronics Journal 38 , 1034–1037(2007) [32] Y.H Ha et al., Symposium on VLSl Technology Digest of Technical Papers (2003) [33] K. Attenborough et al., Philips Research Leuven “An Alternative Concept for Phase Change Random Access Memory”. [34] Martijn H. R. Lankhorst et al., Nature Materials VOL 4,347-352(2005) [35] S.J. Ahn et.al., Computer Aided Engineering Teams Semiconductor R&D Div., Samsung Electronics Co., Symposium on VLSI Technology Digest of Technical Papers(2005) [36] Cheng Xu., Appl. Phys. Lett. 92, 062103(2008) [37] Cheolkyu Kim., Appl. Phys. Lett. 92, 013109(2008) [38] Y. Matsui et al., “Ta2O5 Interfacial Layer between GST and W Plug enabling Low Power Operation of Phase Change Memories”,IEEE(2009) [39] Se-Ho Lee et al., Appl. Phys. Lett. 89, 223116 (2006) [40] Se-Ho Lee et al., Nature Nanotechnology, 2, 626-630(2007) [41] Xuhui Sun et al., J. Phys. Chem. C, 111, 2421-2425(2007) [42] R. S. Wanger et al., Appl. Phys. Lett.4, 5, 89-90(1964) [43] Nanowires and nanobelts Materials,properties and devices Metal and semiconductor nanowires, Volume1 pp12,13 [44] Yiying Wu et al., J. Am. Chem. Soc., 123, 3165-3166(2001) [45] Xuhui Sun et al., Appl. Phys. Lett. 89, 233121(2006) [46] Stefan Meister et al., Nano Lett. Vol. 6, No. 7, 1514-1517(2006) [47] Dong Yu et al., J. AM. CHEM. SOC., 128, 8148-8149(2006) [48] Jin Seok Lee et al., J. AM. CHEM. SOC., 130, 6252–6258(2008) [49] Se-Ho Lee et al., Physica E 40 ,2474–2480(2008) [50] Yeonwoong Jung et al., Nano Lett., Vol. 8, No. 7, 2056-2062(2008) [51] Xuhui Sun et al., IEEE Transactions on electron device, VOL. 55, NO. 11,3131-3135(2008) [52] Bin Yu et. al., IEEE Transactions on electron device, VOL. 7, NO. 4,496-502(2008) [53] Stefan Meister et al., Nano Lett., Vol. 8, No. 12, 4562-4567(2008) [54] Jun-Ku Ahn et al., Nano Lett.,10, 472-477(2010) [55] 賴宏仁博士,國立中興大學,奈米材料課程講義 [56] J. Feinleib et al., Appl. Phys. Lett., 18, 6, 254-257(1971) [57] Eiji Ohno et al., Jpn. J. Appl. Phys., Vol. 28, No. 7, pp1235-1240 (1989) [58] R. J. von Gutfeld et al., J. Appl. Phys., Vol. 43, No. 11, pp4688-4693 (1972) [59] M. Chen et al., Appl. Phys. Lett. 49 (9), pp502-504, (1966) [60] E. Morales-Sa´nchez et al., Thin Solid Films 471, 243– 247(2005) [61] 鄭信民、林麗娟,工研院材料所微結構分析實驗室副研究員、主任,X光繞射應用簡介 [62] E.I. Givargizov et al., “Growth of crystals”, Vol 21, pp12(2002) [63] “Alloy phase diagram”, Vol 3 [64] Yi Cui et al., Appl. Phys. Lett., Vol. 78, No. 15, 2214-2216(2001) [65] Andrew T. Jennings et al., J. Phys. Chem. C, Vol. 113, No. 17, pp6898-6901 (2009) [66] 余承晏,國立中興大學,碩士論文,2009 [67] Z. W. Pan et al., J. Phys. Chem. B, 105, 2507-2514(2001) [68] Xuhui Sun et al., J. Phys. Chem. C, 111, 2421-2425(2007) [69] H. J. Fan et al., Appl. Phys. Lett. 86, 023113 (2005) [70] S. Noor Mohammad, Nano Lett., Vol. 8, No. 5, 1532-1538(2008)
摘要: 
本實驗利用氣相傳輸法合成碲化鍺與銻摻雜碲化鍺一維奈米結構,並藉由中斷實驗觀察其生長機制,再嘗試量測相變化記憶體奈米元件特性。經由實驗可知,將1:1的比例混合的碲粉與鍺粉原料與鍍有金觸媒的矽基板置於高溫爐管中,在原料端溫度為560℃、基板端溫度450℃、通入適當流量的Ar/H240%等條件下,可成功合成碲化鍺一維奈米結構。藉由控制觸媒層的厚度,碲化鍺與銻摻雜碲化鍺一維奈米結構的線徑分佈約為120~300nm,長度可達數10μm以上。透過XRD、TEM、EDS分析結構與組成,證實奈米線為碲化鍺與銻摻雜碲化鍺的單晶結構。在未摻雜與銻摻雜碲化鍺奈米線頂端觀察到殘留的金觸媒顆粒,為證實本實驗是藉由VLS法合成一維奈米結構的強力證據。在相變化記憶體性質量測方面,我們藉由FIB系統製作相變化記憶體奈米元件,並成功的將元件電阻由低電阻態轉換為高電阻態。期許未來使用適當的基板以及量測系統,可成功製作低電流,高反覆讀寫次數的相變化記憶體奈米元件。

One-dimensional phase-change GeTe and Sb-doped GeTe nanostructures were successfully synthesized by vapor transport method. The phase-change nanowire were synthesized on the Au-coated Si substrates in the furnace with source temperature of 560℃ and substrate temperature of 450℃ under Ar/H2 40% gas flow. The diameters of GeTe and Sb-doped GeTe nanowires, which could be controlled by the thickness of Au catalyst, were found to range from 120 to 300 nm and the lengths were up to 10 μm. The crystalline structures and compositions of the as-synthesized products were identified by X-ray diffraction (XRD), Transmission electron microscope (TEM) and Energy dispersive spectrometer (EDS). The results confirmed that the GeTe and Sb-doped GeTe nanowires were single crystals with a rhombohedral structure. The Au nanoparticles could be observed on the tips of nanowires, which is a strong evidence of VLS growth mechanism. The GeTe nanowires were fabricated into single-nanowire PRAM devices by Focus ion beam (FIB), and the device could be successfully switched from low resistance state to high resistance state. We believe that PRAM nanodevices with low reset current and high endurance can be fabricated using GeTe nanowires if suitable substrate and measuring instrument are utilized.
URI: http://hdl.handle.net/11455/10725
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.