Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10729
標題: 熱氧化法合成一維氧化銅奈米結構的成長機制及其一氧化碳氣體感測之研究
Growth mechanism of CuO one-dimensional nanostructures by thermal oxidation process and their CO gas sensing properties.
作者: 董耀中
Dong, Yao-Jhong
關鍵字: CuO;氧化銅;nanowire;Cupric oxide;thermal oxidation;CO gas sensor;response and recover time;奈米線;熱氧化法;一氧化碳;氣體感測元件;響應與回復時間
出版社: 材料科學與工程學系所
引用: [1] B. Delley, E. F. Steigmeier, Physical Review B, vol. 47, No. 3, (1993), 1397 [2] B. Lange, Photoelements and Their Applications, Reinhold, New York (1939) [3] A. E. Rakhshani, Soild-State Electronics, vol. 29, (1986), 7 [4] M. Y. Cui, X. Q. Yao, W. J. Dong, K. Tsukamoto, C. R. Li, Jounl. Cry. Gro., vol. 312, (2010), 287 [5] C. T. Hsieh, J. M. Chen, H. H. Lin, H. C. Shih, Appl. Phys. Let. vol. 83, No. 16, (2003), 3383 [6] Sambandam Anandan, Xiaogang Wen, Shihe Yang, Mat. Chem. & Phys., vol. 93, (2005), 35 [7] N. D. Hoa, N. V. Quy, M. A. Tuan, N. V. Hieu, Physica E, vol. 42, (2009), 146 [8] Joong Jiat Teo, Yu Chang, Hua Chun Ze, Langmuir, vol. 22, (2006), 7369 [9] Bin Liu, Hua Chun Zeng, J. AM. CHEM. SOC. Vol. 126, (2004), 812 [10] Kavita Borgohain, J. B. Singh, M. V. Rama Rao, T. Shripathi, PHYSICAL REVIEW B, vol.61,No 16, (2000), 11093 [11] Hui Wu, Dandan Lin, Wei Pan, Appl. Phys. Let. vol. 89, (2006), 133125 [12] A. A. Eliseev, A. V. Lukashin, A. A. Vertegel, L. I. Heifets, Mat Res Innovat, vol. 3, (2000), 308 [13] Xuchuan Jiang, Thurston Herricks, Younan Xia, Nano Letters, vol.2, No. 12, (2002), 1333 [14] C. T. Hsieh, J. M. Chen, H. H. Lin, H. C. Shih, Appl. Phys. Let. vol.82, No. 18, (2003), 3316 [15] C. H. Xu, C. H. Woo, S. Q. Shi, Chem. Phys. Let., 399, (2004), 62 [16] Ashwani Kumar, A K Srivastava, Pragya Tiwari, R V Nandedkar, J. Phys.: Condens. Matter, vol. 16, (2004), 8531 [17] Young-Sik Cho, Young-Duk Huh, Bull. Korean Chem. Soc., vol.29, No. 12, (2008), 2525 [18] J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, Physical Review B, vol. 38, No. 16, (1988), 11322 [19] O. L. Lisitski, M. E. Kumekov, S. E. Kumekov, E. I. Terukov, Semiconductors, vol. 43, No. 6, (2009), 765 [20] H. B. Lv, M. Yin, Y. L. Song, IEEE Electron Device Letters, vol. 29, No. 1, (2008), 47 [21] Christopher S. Dandeneau, Yu-Hong Jeon, Christopher T. Shelton, Thin Solid Films, vol. 517, (2009), 4448 [22] Toshiro Maruyama, Solar Energy Materials & Solar Cells, vol. 56, (1998), 85 [23] P Samarasekara, N T R N Kumara, N U S Yapa, J. Phys.: Condens. Matter, vol. 18, (2006), 2417 [24] F. P. Koffyberg, F. A. Benko, J. Appl. Phys. vol. 53, No.2, (1982), 1173 [25] F. Marabelli, G. B. Parravicini, F. Salghetti-Drioli, Physical Review B, vol. 56, No. 3, (1995), 1434 [26] A. Roos, B. Karlsson, Solar Energy Materials, vol. 7, (1983), 467 [27] M. Hara, T. Kondo, K. Domen, Chem. Commun. (1998), 357 [28] B. Karlsson, A. Roos, Solar Energy Materials, vol. 10, (1984), 105 [29] M. Serra, D.Sainz, Solar Energy Materials, vol. 13, (1986), 463 [30] A.O. Musa, T. Akomolafe, M. J. Carter, Solar Energy Materials and Solar Cells vol. 51, (1998), 305 [31] N. Khemiri, F. Chaffar Akkari, M. Kanzari, B. Rezig, Thin Solid Films, vol. 516, (2008), 7031 [32] Ratish K. Bedi, Iqbal Singh, Applied Materials & Interfaces, vol. 2, No. 5, (2010), 1361 [33] N. D. Hoa, S. Y. An, N. Q. Dung, Sensors and Actuators B, vol. 146, (2010), 239 [34] S Mridha, D Basak, Semicond. Sci. Technol., vol. 21, (2006), 928 [35] W. J. Moon, J. H. Yu, G. M. Choi, Sensors and Actuators B, vol. 87, (2002), 464 [36] V. R. Katti, A. K. Debnath, K. P. Muthe, Sensors and Actuators B, vol. 96, (2003), 245 [37] Xianghua Kong, Yadong Li, Sensors and Actuators B, vol. 105, (2005), 449 [38] M. F. Luo, Y. J. Zhong, X. X. Yuan, Applyied Catalysis A: General, vol.162, (1997), 121 [39] A. Horne´s, A. B. Hungrı´a, P. Bera, J. AM. CHEM. SOC., vol. 132, No. 1, (2010), 35 [40] Hiroyuki Yamaura, Jun Tamaki, Koji Moriya, J. Electrochem. Soc., vol. 143, No.2, (1996) [41] Hou T. Ng, J. Han, Toshishige Yamada, Nano Lett., vol. 4, No. 7, (2004), 1247 [42] Ali Javey, Nam, Robin S. Friedman, Nano Lett., vol. 7, No. 3, (2007), 773 [43] L Liao, Z Zhang, B Yan, Nanotechnology, vol. 20, (2009) , 85203 [44] B. J. Hansen, N. Kouklin, G. Lu, J. Phys. Chem. C, vol. 114, (2010), 2440 [45] T. Yu, X. Zhao, Z.X. Shen, Journal of Crystal Growth, vol. 268, (2004), 590 [46] E. P. S. Tan, Y. Zhu, T. Yu, Appl. Phys. Let. Vol. 90, (2007), 163112 [47] Y. Zhou, S. Kamiya, H. Minamikawa, Adv. Mater., vol. 19, (2007), 4194 [48] M. Y. Cui, X. Q. Yao, W. J. Dong, Journal of Crystal Growth, vol. 312, (2010), 287 [49] Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, Nanotechnology, vol. 16, (2005), 88 [50] J. Chen, K. Wang, L. Hartman, W. Zhou, J. Phys. Chem. C, vol. 112, (2008), 16017 [51] Y. S. Kim, I. S. Hwang, S. J. Kim, Sensors and Actuators B, vol. 135, (2008), 298 [52] M. Law, L. Greene, J. Johnson, nature materials, vol. 4, (2005), 455 [53] Yueli Liu, Lei Liao, Jinc hai Li, J. Phys. Chem. C, vol. 111, (2007), 5050 [54] R. C. Wang, C. H. Li, Crystal Growth & Design, Vol. 9, No. 5, (2009), 2229 [55] 林鴻明,林中魁,”奈米科技應用研究與展望”,工業材料 179 期,90 年11 月,84-91 頁 [56] Yu Chang, Hua Chun Zeng, Crystal Growth & Design, vol. 4, No. 2, (2004), 397 [57] Y. k. SU, C. M. SHEN, H.T. YANG, Trans. Nonferrous Met. SOC. China, vol. 17, (2007), 783 [58] A. Formhals., US Patent,1-975-504, 1934 [59] Manmeet Kaur, K.P. Muthe, S.K. Despande, Journal of Crystal Growth, vol. 289, (2006), 670 [60] J.T. Chen, F. Zhang , J. Wang, Journal of Alloys and Compounds, vol. 454, (2008), 268 [61] A. M. B. Gonçalves, L. C. Campos, A. S. Ferlauto, J. Appl. Phys., vol. 106 , (2009), 034303 [62] Kaili Zhang, Carole Rossi, Christophe Tenailleau, Nanotechnology, vol. 18, (2007), 275607 [63] Adegboyega, G. A. Niger. J. Renewable Energy 1990, 1, 21 [64] L.S. Huang, S.G. Yang, T. Li, Journal of Cry. Grow., vol. 260, (2004), 130 [65] C. L. Cheng, Y. R. Ma, M. H. Chou, C. Y. Huang, Nanotechnology, vol. 18, (2007), 245604 [66] H. D. Merchant, W.C. Liu, L.A. Giannuzzi, Materials Characterization, vol. 53, (2004), 335 [67] J. M. Cowley, J. Electrochem. Soc., vol. 101, No.6, (1954), 277 [68] O. Kubaschewski, C. B. Alcock, Maxwell Macmillan International Edition, Metallurgical Thermochemistry 5th Edition, (1979) [69] 黃忠良,復漢出版社,金屬材料之高溫氧化與腐蝕, (1988) [70] S. I. Ali, G. C. Wood, Corrsion Science, vol. 8,(1968), 413 [71] R. D. SCHMIDT-WHITLEY, M. MARTINEZ-CLEMENTE, Jourml of’ Crystal Growth, vol. 23, (1974,) 113 [72] Y. ZHU, K. MIMURA, J. W. LIM, METALLURGICAL AND MATERIALS TRANSACTIONS A, vol. 37A, (2006), 1231 [73] Reidar Haugsrud, Journal of The Electrochemical Society, vol.149, No.1, (2002) B14 [74] Per Kofstad, Elsevier Applied Science, High Temperature Corrosion, (1988) [75] 鮮祺振,徐氏基金會出版,金屬腐蝕膜特性探討,(1998) [76] R. F. TYLECOTE, Inst. Met. 78, 501 (1950). [77] G. Zhou, J. C. Yang, Applied Surface Science, vol. 210, (2003), 165 [78] W.Z. Shao, L.C. Feng, L. Zhen, Ceramics International, vol. 35, (2009), 2803 [79] Robert A. Rapp, Metallurgical Transactions A, vol. 15A, (1984), 765 [80] G. M. Raynaud, R. A. Rapp, Oxidation of Metals, vol. 21, Nos. 1/2, (1984), 89 [81] T. J. Hsueh, C. L. Hsub, S. J. Chang, Sensors and Actuators B, vol. 126, (2007), 473 [82] A. Kolmakov, Y. Zhang, G. Cheng, Adv. Mater. vol. 15, No. 12, (2003), 997 [83] NICOLAE BARSAN, UDO WEIMAR, Journal of Electroceramics, vol. 7, (2001), 143 [84] M. TAKATA, D. TSUBONE, H. YANAGIDA, Journal of the American Ceramic Society, vol. 59, Iss 1-2, p. 4 - 8 [85] Irving Langmuir, Constitution of Solids and Liquids, (1916), 2221
摘要: 
本實驗藉由熱氧化法合成一維CuO奈米結構,並觀察其奈米線的成長機制,再利用CuO奈米線製作成簡單的氣體感測元件,應用於低濃度CO氣體的感測。在大氣中約300℃至600℃的溫度範圍可合成出CuO奈米線,高於700℃與低於200℃則無奈米線生成。合成溫度的高低會影響CuO奈米線生成的直徑粗細,奈米線的長度則是會隨合成時間的增加而增加。以450℃持溫6小時合成的奈米線直徑約130nm,線長可長達15μm以上。Cu基板退火實驗觀察到,熱氧化合成CuO奈米線的數量會隨基板退火時間增長而減少,推論CuO奈米線的生長應是藉由原子異向擴散速率的機制所形成。透過XRD與TEM來探討奈米線的結構與生長方向,可知CuO奈米線為單斜的晶體結構,而且是沿(110)堆疊成長。在低濃度CO的感測中,我們所製作CuO奈米線氣體感測元件在300℃的工作溫度時,對低濃度CO皆有良好的響應能力。50ppm的CO濃度靈敏度可達181%,環境中僅有5ppm的CO濃度時,也能有138%的靈敏度。低CO濃度下,氣體感測元件平均響應與回復時間分別約180秒和220秒。因此,CuO奈米線具有很大潛力應用於低濃度CO監測的氣體感測元件。

We have successfully synthesized one-dimensional CuO nanowires by thermal oxidation and observed their growth mechanism. The CuO nanowires were adopted to fabricate a simple gas sensor which can be used for detecting low concentration CO. In the atmosphere at temperatures between 300℃ to 600℃, CuO nanowires could be grown. Once the annealing temperature was higher than 700℃or lower than 200℃, no CuO nanowires could be formed. The varieties of synthesis temperature would affect the diameters of CuO nanowires, and the lengths of nanowires would increase with increasing synthesis time. The diameters of CuO nanowires synthesized at 450℃for 6 hours were approximately 130 nm, and the lengths could be up to 15μm or longer. It was found that the number of nanowires synthesized by thermal oxidation would decrease when the substrate was annealed for longer time, which suggests that the CuO nanowires might be grown by the anisotropic atomic diffusion mechanism. The as-synthesized CuO nanowires were indentified as a monoclinic crystal structure and cumulated along with (110) by XRD and TEM analysis. The gas sensor device fabricated by CuO nanowires exhibited good response capacity for detecting low CO concentration at an operating temperature of 300℃. The sensitivity of the gas sensor could be up to 181% at CO concentration of 50ppm, and could still reach 138% even if the CO concentration was as low as 5ppm. At low CO concentration, the response and recovery times for the gas sensor device were on average about 180 seconds and 220 seconds, respectively. Therefore, CuO nanowires have great potential for low- concentration CO gas sensor device.
URI: http://hdl.handle.net/11455/10729
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.