Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10731
標題: 以水熱法合成氧化鎢一維奈米核/殼結構及其電變色性質的探討
Hydrothermal synthesis of tungsten oxide core-shell nanostructures and their electrochromic properties
作者: 張嘉純
Chang, Chia-Chun
關鍵字: Tungsten oxide;氧化鎢;core/shell nanostructures;Hydrothermal synthesis;Electrochromic properties;核-殼奈米結構;水熱法;電變色性質
出版社: 材料科學與工程學系所
引用: [1] Claes G. Granqvist, Elsevier, Handbook of inorganic electrochromic materials (1995) [2] P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electrochromism Fundamentals and Applications, VCH: Weinheim (1995) [3] http://www.flabegusa.com/ [4] http://eclipsethinfilms.com/home.aspx [5] Gunnar A. Niklasson and Claes G. Granqvist, Journal of Materials Chemistry, Vol. 17, 2007, pp127-156 [6] A. Antonaia, M.L. Addonizio, C. Minarini, T. Polichetti, M. Vittori-Antisari, Electrochimica Acta, Vol. 46, 2001, pp 2221-2227 [7] J. Zhang, J.P.Tu, X.H.Xia, Y.Qiao, Y.Lu, Solar Energy Materials & Solar Cells, Vol. 93, 2009, pp 1840-1845 [8] Lisa M. Kuti, Surinderjit Singh Bhella, and Venkataraman Thangadurai, Inorganic Chmistry, Vol. 48, 2009, pp 6804-6811 [9] B Deb, S Desai, G U Sumanasekera, and M K Sunkara, Nanotechnology, Vol. 18, 2007 [10] Kazuhiro Sayama, Kazuaki Mukasa, Ryu Abe, Yoshimoto Abe and Hironori Arakawa, Chemcomm Communication, 2001, pp 2416-2417 [11] Jingguo Liu, Zhengjun Zhang, Ye Zhao, Xin Su, Shuang Liu, and Enge Wang, small, Vol. 1, No. 3, 2005, pp 310-313 [12] Mu-Tung Chang, Li-Jen Chou, Yu-Lun Chueh, Yu-Chen Lee, Chin-Hua Hsieh, Chii-Dong Chen, Yann-Wen Lan, and Lih-Juann Chen, small, Vol. 3, No. 4, 2007, pp 658-664 [13] Anıl Agˇıral and J. G. E. (Han) Gardeniers, Journal of Physical Chemistry C, Vol. 112, No. 39, 2008, pp 15183-15189 [14] B. GERAND, G. NOWOGROCKI, J. GUENOT, AND M. FIGLARZ, Journal of Solid State Chemistry, Vol. 29, 1979, pp 429-434 [15] Zhanjun Gu, Huiqiao Li, Tianyou Zhai, Wensheng Yang, Yongyao Xia, Ying Ma, Jiannian Yao, Journal of Solid State Chemistry, Vol. 180, 2007, pp 98-105 [16] C. Genin, A. Driouiche, B. G6rand and M. Figlarz, Solid State Ionics, 1992, pp 315-323 [17] Wei Cheng, Emmanuel Baudrin, Bruce Dunn and Jeffrey I. Zink, Journal of Materials Chemisty, Vol. 11, 2001, pp 92-97 [18] M. Deepa, D.PP Singh, S.M. Shivaprasad, S.A. Agnihotry, Current Applied Physics, Vol. 7, 2007, pp 220-229 [19] M. Deepa, M. Kar, D.P. Singh, A.K. Srivastava, Shahzada Ahmad, Solar Energy Materials and Solar Cells, Vol. 92, 2008, pp170-178 [20] L. Hechavarría, H. Hu, M. Miranda, M. E. Nicho, Journal of Solid State Electrochem, Vol. 13, 2009, pp 687-695 [21] So Yeon Park, Ji Min Lee, Changho Noh and Seung Uk Son, Journal of Materials Chemistry, Vol. 19, 2009, pp 7959-7964 [22] Chia-Ching Liao, Fu-Rong Chen, Ji-Jung Kai, Solar Energy Materials and Solar Cells, Vol. 90, 2006, pp 1147-1155 [23] Jinmin Wang, Eugene Khoo, Pooi See Lee, and Jan Ma, Journal of Physcial Chemistry C, Vol. 112, 2008, pp 14306-14312 [24] Jinmin Wang, Eugene Khoo, Pooi See Lee, and Jan Ma, Journal of Physcial Chemistry C, Vol. 113, 2009, pp 965-9658 [25] Kunquan Hong, Maohai Xie, Rong Hu, and Huasheng Wu, Applied Physics Letters, Vol. 90, 2007 [26] Kunquan Hong,Wingching Yiu, HuashengWu, Ju Gao and Maohai Xie, Nanotechnology, Vol. 16, 2005, pp 1608-1611 [27] Zhidong Xiao, Lide Zhang, Xike Tian and Xiaosheng Fang, Nanotechnology, Vol. 16, 2005, pp 2647-2650 [28] Xiaofeng Lu, Xincai Liu, Wanjin Zhang, Ce Wanga, Yen Wei, Jounal of Colloid and Interface Science, Vol. 298, 2006, pp 996-999 [29] Shibin Sun, Yimin Zhao, Yongde Xia, Zengda Zou, Guanghui Min and Yanqiu Zhu, Nanotechnology, Vol. 19, 2008 [30] Richard I. Walton, Chemical Society Reviews, Vol. 31, 2002, pp 230-238 [31] Sitthisuntorn Supothina, Panpailin Seeharaj, Sorachon Yoriya, Mana Sriyudthsak, Ceramics International, Vol. 33, 2007, pp 931-936 [32] R. Huirache-Acuña, F. Paraguay-Delgado, M.A. Albiter, J. Lara-Romero, R. Martínez-Sánchez, Materials Characterization, Vol. 60, 2009, pp 932-937 [33] Ruo-Fei Mo, Guo-Qiang Jin, Xiang-Yun Guo, Materials Letters, Vol. 61, 2007, pp 3787-3790 [34] Kai Huang, Qingtao Pan, Feng Yang, Shibing Ni, Xiucheng Wei and Deyan He, J. Phys. D: Appl. Phys., Vol. 41, 2008, 155417 (pp 6) [35] Xiaoping Shen, Guoxiu Wang, David Wexlera, Sensors and Actuators B, Vol. 143, 2009, pp 325-332 [36] Zhanjun Gu, Tianyou Zhai, Bifen Gao, Xiaohai Sheng, Yaobing Wang, Hongbing Fu, Ying Ma, and Jiannian Yao, J. Phys. Chem. B, Vol. 110, 2006, pp 23829-23836 [37] Gang Gu, Bo Zheng, W. Q. Han, Siegmar Roth, and Jie Liu, Nano Letters, Vol. 2, No. 8, 2002, pp 849-851 [38] Zhidong Xiao1, Lide Zhang, Xike Tian and Xiaosheng Fang, Nanotechnology, Vol. 16, 2005, pp 2647-2650 [39] Jang-Hoon Ha, P. Muralidharan, Do Kyung Kim, Journal of Alloys and Compounds, Vol. 475, 2009, pp 446-451 [40] Hang Qi, Cuiying Wang, and Jie Liu, Adv. Mater., Vol. 15, 2003, pp 411-414 [41] Zongwen Liu, Yoshio Bando, Chengchun Tang, Chemical Physics Letters, Vol. 372, 2003, pp 179-182 [42] Y.B. Li, Y. Bando, D. Golberg, K. Kurashima, Chemical Physics Letters, Vol. 367, 2003, pp 214-218 [43] Kake Zhu, Heyong He, Songhai Xie, Xuan Zhang, Wuzong Zhou, Songlin Jin, Bin Yue, Chemical Physics Letters, Vol. 377, 2003, pp 317-321 [44] Xiao-Lin Li, Jun-Feng Liu, and Ya-Dong Li, Inorganic Chemistry, Vol. 42, No. 3, 2003, pp 921-924 [45] Y. M. Zhao, Y. H. Li, I. Ahmad, D. G. McCartney, and Y. Q. Zhua, APPLIED PHYSICS LETTERS, Vol. 89, No. 133116, 2006, [46] Chao-Hsuing Chen1, Shui-JinnWang, Rong-Ming Ko, Yi-Cheng Kuo, Kai-Ming Uang, Tron-Min Chen, Nanotechnology, Vol. 17, 2006, pp 217-223 [47] Raghunandan Seelaboyina, JunHuang, Jucheol Park, Dong Hun Kang andWon Bong Choi, Nanotechnology, Vol. 17, 2006, pp 4840-4844 [48] Chandra Sekhar Rout, A. Govindaraj and C. N. R. Rao, J. Mater. Chem., Vol. 16, 2006, pp 3936-3941 [49] Xu Chun Song, Yi Fan Zheng, E. Yang, Yun Wang, Materials Letters, Vol. 61, 2007, pp 3904-3908 [50] Hee-Sang Shim, JeongWonKim, Yung-EunSung, WonBaeKim, Solar Energy Materials and Solar Cells, Vol. 93, Issue 12, 2009, pp 2062-2068 [51] Zhanjun Gu, Ying Ma, Wensheng Yang, Guangjin Zhang and Jiannian Yao, Chem. Commun., 2005, pp 3597-3599 [52] M Stanley Whittingham, Current Opinion in Solid State and Materials Science, Vol. 1, Issue 2, 1996, pp 227-232 [53] M. Stanley Whittingham, Jing-Dong Guo, Rongji Chen, Thomas Chirayil, Gerald Janauer, Peter Zavalij, Solid State Ionics, Vol. 75, 1995, pp 257-268 [54] Clemens Burda, Xiaobo Chen, Radha Narayanan, and Mostafa A. El-Sayed, Chemical Reviews, Vol. 105, No. 4, 2005, pp 1025-1102 [55] X.M. Sun, X. Chen, Z.X. Deng, Y.D. Li, Materials Chemistry and PhysicsVol. 78, 2002, pp 99-104 [56] Bin Liu and Hua Chun Zeng, J. AM. CHEM. SOC., Vol 125, 2003, pp 4430-4431 [57] Shibin Sun, Zengda Zou, Guanghui Min, Materials Characterization, Vol. 60, 2009, pp 437-440 [58] M.Gillet, R.Delamare, E.Gillet, Journal of Crystal Growth, Vol. 279, 2005, pp 93-99 [59] M. Gillet, R. Delamare, E. Gillet, Applied Surface Science, Vol. 254, 2007, pp 270-273 [60] S. Bruyère, V. Potin, M. Gillet, B. Domenichini, S. Bourgeois, Thin Solid Films, Vol. 517, Issue 24, 2009, pp 6565-6568 [61] A.Al Mohammad1, M.Gillet, Thin Solid Films, Vol. 408, 2002, pp 302-309 [62] M.G. Hutchins, N.S. Butt, A.J. Topping, J. Gallego, P. Milne, D. Jeffrey, I. Brotherston, Electrochimica Acta, Vol. 46, 2001, pp 1983-1988.
摘要: 
本實驗以兩階段水熱法成長一維結晶/非晶氧化鎢奈米核殼結構。第一階段先以高溫高壓水熱法合成一維結晶態的氧化鎢奈米棒,第二階段則是以低溫水熱法在結晶氧化鎢奈米棒外圍包覆非晶的氧化鎢殼層。透過SEM、XRD、TEM分析產物的形貌、結構及組成,證實了第一階段合成的奈米棒為單晶結構的氧化鎢,第二階段合成的包覆層為非晶的氧化鎢。單晶氧化鎢奈米棒的直徑約200 nm,非晶包覆殼層的厚度約80 nm。第一階段一維結晶氧化鎢奈米棒是由氧化鎢奈米細絲以Oriented Aggregation (OA)方式聚集形成,其線徑及長度隨著時間增長而增加。電變色性質的測試中,‐3.0V 180秒著色及+2.0V 90秒去色時,可分別量得32.30%及75.56%穿透率;達到70%著色需41秒,70%去色則僅需6秒;10次著/去色差異在8%以下。實驗結果顯示,一維氧化鎢奈米核/殼結構兼具非晶結構的高著色效果及結晶結構的高穩定性兩大優點,對於應用於電變色領域具有商業化的潛力。

We reported the synthesis of one-dimensional crystalline/amorphous core-shell tungsten oxide nanostructures by a two-step hydrothermal method. First, the crystalline tungsten oxide core nanostructures were synthesized by using a high-pressure and high- temperature hydrothermal process. Then, the amorphous tungsten oxide shells were coated on the crystalline tungsten oxide core structures by using a low-temperature hydrothermal process. The crystalline structures and morphologies of the as-synthesized products were identified by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) analysis. The results confirmed that the rod-like core structure is single crystalline WO3 and the shell structure is amorphous WOx. The diameters of single-crystalline WO3 nanorods are about 200 nm. The thickness of amorphous shell layer is about 80 nm. We also found that the formation of single-crystalline WO3 nanorods in the first step is governed by the oriented aggregation (OA) mechanism. The diameters and lengths of WO3 nanorods increased with synthesis time. From electrochromic measurement, the transmission of the device fabricated by using crystalline/amorphous core-shell tungsten oxide nanorods in the coloring and bleaching states is 32.3% and 75.56%, respectively. The coloring and bleaching processes to reach 70% of the transmission of the previous state would take 41 seconds and 6 seconds, respectively. After ten-time cycle test, the transmission change is below 8%. Clearly, the electrochromic device fabricated by one-dimensional crystalline/ amorphous core-shell tungsten oxide nanorods has both high coloring efficiency from the amorphous WOx shell layer and high stability from the crystalline WO3 core nanostructure. It may have potential for the applications of electrochromic products.
URI: http://hdl.handle.net/11455/10731
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.