Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10743
標題: 非線性多項式荷重速率下 黏土結合垂直與徑向壓密行為之研究
Combined Vertical and Radial Consolidation under Nonlinearly Polynomially Time-Dependent Loading
作者: 張羽甄
Chang, Yu-Chen
關鍵字: 多項式;Consolidation;非線性;垂直向;徑向
出版社: 土木工程學系所
引用: 參 考 文 獻 1. 沈茂松,實用土壤力學試驗,文笙書局股份有限公司,民國八十三年。 2. 呂炫儕 (2003),”線性荷重速率對黏土單向度壓密行為影響之研究”,國立中興大學土木工程研究所碩士論文,台中。 3. 李弘義 (2005),”非線性荷重對垂直及徑向壓密行為之研究”, 國立中興大學土木工程研究所碩士論文,台中。 4. 李浚碩 (2009),”雙層黏土徑向壓密之研究”, 國立中興大學土木工程研究所碩士論文,台中。 5. 洪如江,土壤力學試驗,科技圖書股份有限公司,民國八十四年。 6. 馬上智 (2000),”荷重速率對黏土單向度壓密型為之研究”, 國立中興大學土木工程研究所碩士論文,台中。 7. 陳秀梅 (2008),”線性荷重下雙層黏土垂直壓密行為之研究” ,國立中興大學土木工程研究所碩士論文,台中。 8. 陳瀅年(2011),”多項式非線性荷重隨時間改變下徑向壓密行為之研究”,國立中興大學土木工程研究所碩士論文,台中。 9. 張朝和 (2007),”雙層黏土垂直壓密行為之研究” ,國立中興大學土木工程研究所碩士論文,台中。 10. 黃景茂 (2006),”非線性荷重速率下結合垂直與徑向壓密行為之研究”,國立中興大學土木工程研究所碩士論文,台中。 11. 葉純如 (2012),”非線性多項式荷重速率下黏土垂直壓密行為之研究”,國立中興大學土木工程研究所碩士論文,台中。 12. 蔡宗翰 (2004),”不同線性荷重速率下結合垂直與徑向壓密型為之研究”, 國立中興大學土木工程研究所碩士論文,台中。 13. 劉惠傑 (2002),”線性荷重速率對黏土水平壓密行為之研究”,國立中興大學土木工程研究所碩士論文,台中。 14. 謝明都 (2009),”在線性荷重下雙層黏土徑向壓密之研究”,國立中興大學土木工程研究所碩士論文,台中。 15. Al-Tabbaa, A. and Muir Wood, D. (1987), “Some Measurements of the Permeability of Kaolin”, Geotechnique, Vol. 37, No. 4 , pp. 499-503. 16. Almedia, M. S. S., Santa, Maria P. E. L., Martins S. M., Spotti A. P., and Coelho L. B. M. (2000), “Consolidation of a Very Soft Clay with Vertical Drains”, Geotechnique, Vol. 50, No. 6, pp. 633-643. 17. Crawford, C. B. and Campanella, R. G. (1991), “Comparison of Field Consolidation with Laboratory and in Situ Tests”, Canadian Geotechnical Journal, Vol. 28, pp. 103-112. 18. Cortellazzo, G. (2002), “Comparison between Laboratory and in Situ Values of the Coefficient of Primary Consolidation Cv ”, Canadian Geotechnical Journal, Vol. 39, pp. 103-110. 19. Duncan, J. M., Javette, D. F. and Stark, T. D. (1991), “The Importance of a Desiccated Crust on Clay Settlement”, Soil and Foundation, Vol. 31, No. 3, pp. 877-902. 20. Duncan, J. M. (1993), “Limitations of Conventional Analysis of Consolidation Settlement”, Journal of Geotechnical Engineering, ASCE, Vol. 119, No. 9, pp. 1333-1359. 21. Gibson, R. E., England, G. L. and Hussey, M. J. L. (1967), “Theory of One–dimensional Consolidation of Saturated Soils”, Geotechnique, Vol. 17, pp. 261-273. 22. Hansbo, S., Jamiolkowski, M. and Kok, L.(1981), “Consolidation by Vertical Drains”, Geotechnique, Vol. 31(1)., pp. 45-66. 23. Huang, Y. H., Samarasinghe, A. M. and Drenvich, V. P. (1982), “Permeability and Consolidation of Normally Consolidated Soils”, Journal of Geotechnical Engineering, ASCE , Vol. 108, No. GT6 , pp. 835-850. 24. Juran, I. and Guermazi, A. (1988), “Settlement Response of Soft Soils Reinforced by Compacted Sand Columns”, Journal of Geotechnical Engineering, ASCE, Vol. 114, No. 8, pp. 930-943. 25. K. Kurma Rao and M.Vijaya Rama Raju (1990), “One-dimensional Consolidation with Three-dimensional Flow Time-dependent Loading”, Journal of Geotechnical Engineering, Vol. 116, No.10, pp. 1576-1580. 26. Lowe, John Ⅲ, Jonas, E. and Obrician, V. (1969), “Controlled Gradient Consolidation Tests”, Journal of Soil Mechanics and Foundation Div., ASCE , Vol. 95, No. 1, Proc. Paper 6328, pp. 77-97. 27. O''Brien, G. G., Hyman, M. A. and Kaplan, S. (1950), “A Study of the Numerical Solution of Partial Differential Equation”, Journal of Math. and physics, Vol. 29, pp. 223-251. 28. Raymond, G. P. (1966), “Laboratory Consolidation of Some Normally Consolidation Soils”, Canadian Geotechnical Journal, Vol. 4, No. 4, pp. 217-234. 29. Smith, R. E., and Walse, H. E. (1969), “Consolidation Under Constant Rate of Strain” , Journal of Soil Mechanics and Foundation Div. Am. Soc. Civ. Eng., Vol. 95 , No. 2, pp. 519-538. 30. Shukla, S. K. and Chandra, S. (1995), “Time-dependent Settlement Response of Granular Fill on Soft Soil”, Soil and Foundation, Vol. 35, No. 4, pp. 105-108. 31. Tamg, Xiao-Wu and Katsutada, Onitsuka (2002), “Consolidation by Vertical Drains under Time-dpendent Loading”, Int. J. Numer. Anal. Math. Geomech., Vol. 24, pp. 739-751. 32. Taylor, D. W. (1948), Fundamentals of Soil Mechanics, John Wiley and Sons, New York. 33. Terzaghi, K. (1943), Theoretical Soil Mechanics, John Wiley and Sons, New York. 34. Pane, V. and Schiffman, R. L. (1983), “Effects of Consolidation on Permeability Measurements for Soft Clay”, Department of Civil Engineering, University of Colorado, pp. 67-72. 35. Wissa, A. E. Z., Christian, J. T., Davis, E. H. and Heiber, S. (1971), “Consolidation at Constant Rate of Strain”, Journal of Soil Mechanics and Foundation Div., ASCE , Vol. 97, No. 10, pp. 1393-1413. 36. Zhu, G. and Yin, J.H. (2001), “Consolidation of Soil with Vertical and Horizontal Drainage under Ramp Load”, Geotechnique 51. ,No.4, pp. 361-367. 37. Znidarcic, D., Schiffman, R. L., Pane, V., Croce, P., Ko, H. Y. and Olsen, H. W. (1986), “The Theory of One-dimensional Consolidation of Saturated Clays: Part Ⅴ, Constant Rate of Deformation Testing and Analysis”, Geotechnique, Vol. 36, No. 2, pp. 227-237.
摘要: 
本研究主要在探討不同多項式非線性荷重速率下隨時間改變下結合垂直與徑向同時排水之壓密沉陷行為。在研究過程中透過黏彈性理論分析與Carrillo[1942]的方法將垂直壓密與徑向壓密結合,並比較在不同多項式非線性荷重速率下,理論壓密沉陷量值和MTS實際量測值間之差異,另外,藉本研究之結合垂直與徑向壓密之結果與葉純如[2012]僅考慮垂直壓密試驗及陳瀅年[2011]之僅考慮徑向壓密試驗相比較其結果。
本研究採用三種不同PI值之重模黏土,將前人葉純如[2012] 與陳瀅年[2011]所求得各級有效壓力下之壓密係數Cv與Ch值,透過Carrillo[1942]的方法將垂直向壓密與徑向壓密結合,以預估不同非線性荷重速率下結合垂直與徑向壓密試驗之理論沉陷量值。
試驗上係以MTS材料試驗機對上述三種不同塑性指數之黏土進行各種不同多項式非線性荷重速率下之壓密試驗,紀錄其壓密沉陷量與時間之關係並與理論所預測當Cv與Ch皆為定值或Cv與Ch皆為隨有效壓力改變之壓密沉陷值相比較。
接著,本試驗以大尺寸之壓密盒(直徑12.7cm,高2.54cm) 與原尺寸壓密環(直徑6.35cm,高2.54cm)進行兩種不同多項式非線性荷重速率下結合垂直與徑向同時排水壓密之MTS量測,將此MTS實際量測結果與預測值相比較;此外,與先前陳瀅年[2011]僅考慮徑向排水形式之MTS量測值相比較得知,結合垂直與徑向壓密試驗,由於排水途徑增加,壓密過程亦增快。
URI: http://hdl.handle.net/11455/10743
其他識別: U0005-1508201311340300
Appears in Collections:土木工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.