Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10761
DC FieldValueLanguage
dc.contributor薛富盛zh_TW
dc.contributor楊聰仁zh_TW
dc.contributor葛明德zh_TW
dc.contributor李春穎zh_TW
dc.contributor林招松zh_TW
dc.contributor.advisor武東星zh_TW
dc.contributor.author李弘彬zh_TW
dc.contributor.authorLee, Hung-Binen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T06:46:26Z-
dc.date.available2014-06-06T06:46:26Z-
dc.identifier.citation參考文獻 1. F. A. Lowenheim, Electroplating: Fundamentals of Surface Finishing,1st ed., McGraw-Hill (1978) 540-541. 2. D. Baudrand, Nickel Sulfamate Plating, Its Mystique and Practicality, Metal Finishing, 94 (1996) 15-18. 3. D. S. Lashmore and J. F. Weinroth, Pulsed Electrodeposition of Nickel-Phosphorus Metallic Glass Alloys, Plating and Surface Finishing, 69 (1982) 72-76. 4. A. Bai, P. Y. Chuang and C. C. Hu, The Corrosion Behavior of Ni-P Deposits with High Phosphorus Contents in Brine Media, Materials Chemistry and Physics, 82 (2003) 93-100. 5. M. Thoma, A Cobalt/Chromic Oxide Composite Coating for High- Temperature Wear Resistance, Plating and Surface Finishing, 71 (1984) 51-53. 6. M. Paunovic and M. Schlesinger, Fundamentals of Electrochemical Deposition, John Wiley & Sons (1998) 10-15. 7. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, New York: Wiley (2001) 50-55. 8. N. Zech, E. J. Podlaha and D. Landolt, Anomalous Codeposition of Iron Group Metals I. Experimental Results, Journal of the Electrochemical Society, 146 (1999) 2886-2891. 9. N. Zech, E. J. Podlaha and D. Landolt, Anomalous Codeposition of Iron Group Metals II. Mathematical Model, Journal of the Electrochemical Society, 146 (1999) 2892-2900. 10. N. Kanani, Electroplating-Basic Principles, Process and Practice, 1st ed., Elsevier (2004) 33-38. 11. D. A. Jones, Principles and Prevention of Corrosion, 2nd, Prentice Hall International, Inc., (1997)44-171. 12. 陳豐彥,何信威, 燒結摩擦材料, 粉末冶金手冊, 中華民國粉末冶金協會, (1994) 445-457. 13. 鮮祺振編著, 金屬腐蝕特性討論, 徐氏基金會, (1998) 77-78. 14. 柯賢文編著, 腐蝕及其防治, 全華科技圖書, (1985) 66-67. 15. DIN 50320:Verschlei β -Begriffe,analyse von Verschlei βvor- gangen ,Gliederung des Verschlei β gebietes. BeuthVerlag, Berlin ,1979. 16. E. Rabinowicz, Friction and Wear of Materials, John Wiley & Sons,Inc., (1995) 88-95. 17. 莊東漢編著, 材料破損分析, 五南圖書, (2007) 282-310. 18. F. P. Bowden, A. J. W. Moore, and D. Tabor, The Ploughing and Adhesion of Sliding Metals, Journal of Applied Physics, 14 (1943) 80-91. 19. G. Z. Karl-Heinz, Microstructure and Wear of Materials, Elsevier Science Publishing Company Inc., (1987) 113-119. 20. 鮮祺振編著, 腐蝕控制, 徐氏基金會, (1998) 56-57. 21. W. Batchelor and G. W. Stachowiak, Predicting Synergism Between Corrosion and Abrasive Wear, Wear, 123 (1988) 281-291. 22. M.H. Hong and S.I. Pyun, Applied Potential Dependence of Corrosive Wear Behaviour of 304-L Stainless Steel in Sulphuric Acid Solution, Journal of Materials Science Letters, 10 (1991) 716-719. 23. T.C. Zhang, X.X. Jiang and S.Z. Li, Acceleration of Corrosive Wear of Duplex Stainless Steel by Chloride in 69% H3PO4 Solution, Wear 199 (1996) 253 - 259. 24. T.C. Zhang, X.X. Jiang, S.Z. Li and X.C. Lu, A Quantitative Estimation of the Synergy Between Corrosion and Abrasion, Corrosion Science 36 (1994) 1953-1962. 25. 鮮祺振編著, 腐蝕理論與實驗, 徐氏基金會, (1993) 16-18. 26. H. Abd-El-Kader and S.M. El-Raghy, Wear-Corrosion Mechanism of Stainless Steel in Chloride Media, Corrosion Science 26 (1986) 647-653. 27. T. B. Massalski, J. L. Murrary, L. H. Bennett and H. Baker, Binary Alloys Phase Diagrams, Metals Park, Ohio, American Society for Metals, (1986) 1343-1345. 28. N.G. Patrick, D.D. Snyder, J. LaSala, B. Clemens and C. Fuerst, Structure and Crystallization of Nickel-Phosphorus Alloys Prepared by High-Rate Electrodeposition, Journal of the Electrochemical Society, 135, 6, (1988) 1376-1381. 29. C. Rajagopal, D. Mukherjee and K. S. Rajagopalan, Electrodeposition of Corrosion Resistant Amorphous Nickel Alloys on Mild Steel, Metal Finishing , 82, 1 (1984) 59-65. 30. C. C. Hu and A. Bai, Influences of the Phosphorus Content on Physico- chemical Properties of Nickel-Phosphorus Deposits, Materials Chemistry and Physics, 77 (2002) 215-225. 31. M. H. Seo, J.S. Kim, W. S. Hwang, D. J. Kim , S. S. Hwang and B. S. Chun, Characteristics of Ni-P Alloy Electrodeposited From a Sulfamate Bath, Surface and Coatings Technology, 176 (2004) 135-140. 32. T. Morikawa, T. Nakade, M. Yokoi, Y. Fukumoto and C. Iwakura, Electrodeposition of Ni-P Alloys from Ni-Citrate Bath, Electrochimica Acta, 42 (1997) 115-118. 33. A. Brenner, Electrodeposition of Alloys Vol. II, Academic Press, New York, 1963, 457-477. 34. K. Masui, T. Nomura, S. Kwon and D. Chang, The Mechanism of Ni-P Alloy Deposition by Electroplating Method, 表面技術, 151, 43, (1992) 195-199. 35. M. Ratzker, D. S. Lashmore and K. W. Pratt, Electrodeposition and Corrosion Performance of Nickel-Phosphorus Amorphous Alloys, Plating and Surface Finishing, 76 (1986) 74-82. 36. R. L. Zeller III and U. Landau, Electrodeposition of Ni-P Amorphous Alloys, Journal of the Electrochemical Society, 139 (1992) 3464-3469. 37. J. Crousier, Z. Hanane and J. P. Crousier, Electrodeposition of NiP Amorphous Alloys a Multilayer Structure, Thin Solid Films, 248 (1994) 51-56. 38. T. M. Harris and Q. D. Dang, The Mechanism of Phosphorus Incorporation during the Electrodeposition of Nickel-Phosphorus Alloys, Journal of the Electrochemical Society, 140 (1993) 81-83. 39. Y. Zeng and S. Zhou, In Situ Surface Raman Study of the Phosphorus Incorporation Mechanism During Electrodeposition of Ni-P Alloys , Journal of Electroanalytical Chemistry, 469 (1999) 79-83. 40. G. McMahon and U. Erb, Structural Transitions in Electroplated Ni-P Alloys, Journal of Materials Science Letters 8 (1989) 865-868. 41. C.S. Lin, C. Y. Lee, F. J. Chen and W. C. Li, J. Structural Evolution and Internal Stress of Nickel-Phosphorus Electrodeposits, Journal of the Electrochemical Society, 152 (2005) C370-C375. 42. H. D. Park, D. Chang, K. H. Lee and S.G. Kang, Internal Stress in Ni–P Electrodeposits, Plating and Surface Finishing, 88 (2001) 64-66. 43. R. Narayan and M. N. Mungole, Electrodeposition of Ni-P Alloy Coatings, Surface Technology, 24 (1985) 233-239. 44. B. P. Daly and F. J. Barry, Electrochemical Nickel-Phosphorus Alloy Formation, International Materials Reviews, 48 (2003) 326-338. 45. C. C. Hu and A. Bai, Influences of the Phosphorus Content on Physicochemical Properties of Nickel-Phosphorus Deposits, Materials Chemistry and Physics, 77 (2002) 215-225. 46. R. Weil, J. H. Lee, I. Kim, and K. Parker, Comparison of Some Mechanical and Corrosion Properties of Electroless and Electroplated Nickel- Phosphorous Alloys, Plating and Surface Finishing, 76 (1989) 62-66. 47. D. A. Luke, Nickel-Phosphorus Electrodeposits, Transactions of the Institute of Metal Finishing, 64 (1986) 99-104. 48. J. P. Bonino, S. Buret-Hoteeaz, C.Bories, P.Pouderoux and A.Rousset, Thermal Stability of Electrodeposited Ni-P Alloys, Journal of Applied Electrochemistry, 27 (1997) 1193-1197. 49. A. Kawashima, Y. P. Lu, H. Habazaki, K. Asami and K. Hashimoto, Structure and Corrosion Behavior of Electrodeposited Ni-P Alloys, Corrosion Engineering, 38 (1989) 593-598. 50. D. H. Jeong, U. Erb, K.T. Aust, and G. Palumbo, The Relationship Between Hardness and Abrasive Wear Resistance of Electrodeposited Nano- crystalline Ni-P Coatings, Scripta Materialia, 48 (2003) 1067-1072. 51. D. S. Lashmore and J. F. Weinroth, Pulsed Electrodeposition of Nickel- Phosphorus Metallic Glass Alloys, Plating and Surface Finishing, 69 (1982) 72-76. 52. J. Flis and D. J. Duqutte, Effect of Phosphorus on Anodic Dissolution and Passivation of Nickel in Near-Neutral Solutions, Corrosion, 41 (1985) 700-706. 53. R. Rofagha, U. Erb, D.Ostrander, G. Palumbo and K.T. Aust, The Effects of Grain Size and Phosphorus on the Cossosion of Nanocrystalline Ni-P Alloys, Nanostructured Materials, 2 (1993) 1-10. 54. I. V. Petukhov, M. G. Shcherban, N. E. Skryabina, and L. N. Malinina, Corrosion and Electrochemical Behavior of Ni-P Coatings in 0.5 M H2SO4, Protection of Metals, 38 (2002) 370–376. 55. G. Lu and G. Zangari, Corrosion Resistance of Ternary Ni-P Based Alloys in Sulfuric Acid Solutions, Electrochimica Acta, 47 (2002) 2969-2979. 56. A. Bai, P. Y. Chuang and C. C. Hu, The Corrosion Behavior of Ni-P Deposits with High Phosphorus Contents in Brine Media, Materials Chemistry and Physics, 82 (2003) 93-100. 57. B. Bozzini, P.L. Cavallotti and G. Parisi, Corrosion and Erosion Corrosion of Electrodeposited Ni-P/B4C Composites, British Corrosion Journal, 36 (2001) 49-55. 58. B. Bozzoni, C. Lenardi, M. Serra and M. Faniglulio, Electrochemical and X-ray Photoelectron Spectroscopy Investigation into Anodic Behaviour of Electroless Ni-9.5wt%P in Acidic Chloride Environment, British Corrosion Journal, 37 (2002) 173-181. 59. P. H. Lo, W. T. Tsai, J. T. Lee and M. P. Hung, Role of Phosphorus in the Electrochemical Behavior of Electroless Ni-P Alloys in 3.5wt.%NaCl Solutions, Surface and Coating Technology, 67 (1994) 27-34. 60. S. J. Splinter, R. Rofagha, N. S. McIntyre and U. Erb, XPS Characterization of the Corrosion Films Formed on Nanocrystalline Ni-P Alloys in Sulphuric Acid, Surface and Interface Analysis, 24 (1996) 181-186. 61. R. B. Diegle, N. R. Sorensen and C. R. Clayton, An XPS Investigation into the Passivity of an Amorphous Ni-20P Alloy, Journal of the Electrochemical Society , 135 (1988) 1085-1092. 62. R. B. Diegle,C. R. Clayton,Y. Lu and N. R. Sorensen, Evidence of Chemical Passivity in Amorphous Ni-20P Alloy, Journal of the Electrochemical Society, 134 (1987) 138-139. 63. L. Wang, Y. Gao, T. Xu and Q. Xue, Corrosion Resistance and Lubricated Sliding Wear Behaviour of Novel Ni–P Graded Alloys as an Alternative to Hard Cr Deposits, Applied Surface Science, 252 (2006) 7361–7372. 64. A. Bai, P. Y. Chuang and C. C. Hu, The Corrosion Behavior of Ni-P Deposits with High Phosphorus Contents in Brine Media, Materials Chemistry and Physics, 82 (2003) 93-100. 65. A.S.M.A. Haseeb, U. Albers and K. Bade, Friction and Wear Characteristics of Electrodeposited Nanocrystalline Nickel-Tungsten Alloy Films, Wear, 264 (2008) 106-112. 66. M. Donten, H. Cesiulis and Z. Stojek, Electrodeposition and Properties of Ni-W, Fe-W and Fe-Ni-W Amorphous Alloys a Comparative Study, Electrochimica Acta, 45 (2000) 3389-3396. 67. J. L. Carbajal and R. E. White, Electrochemical Production and Corrosion Testing of Amorphous Ni-P, Journal of the Electrochemical Society, 135 (1988) 2952-2957. 68. K. H. Hou, M. C. Jeng and M. D. Ger, A study on the Wear Resistance Characteristics of Pulse Electroforming Ni-P Alloy Coatings as Plated, Wear, 262 (2007) 833-844. 69. D. H. Jeong , U. Erb, K.T. Aust and G. Palumbo, The Relationship Between Hardness and Abrasive Wear Resistance of Electrodeposited Nano- crystalline Ni-P Coatings, Scripta Materialia, 48 (2003) 1067-1072. 70. I. Apachiter, F.D. Tichelaar, J. Duszczyk and L. Katgerman, The Effect of Heat Treatment on the Structure and Abrasive Wear Resistance of Autocatalytic NiP and NiP–SiC Coatings, Surface and Coatings Technology, 149 (2002) 263-278. 71. S. Alirezaei , S.M. Monirvaghefi, M. Salehi and A. Saatchi, Wear Behavior of Ni-P and Ni-P-Al2O3 Electroless Coatings, Wear, 262 (2007) 978-985. 72. V.V.N. Reddy, B. Ramamoorthy and P. K. Nair, A Study on the Wear Resistance of Electroless Ni-P/Diamond Composite Coatings, Wear, 239 (2000) 111-116. 73. B. Bozzini, C. Martini, P.L. Cavallotti and E. Lanzoni, Relationships Among Crystallographic Structure Mechanical Properties and Tribological Behaviour of Electroless Ni-P(9%)/B4C Films, Wear, 225-229 (1999) 806-813. 74. D. Landolt , S. Mischler and M. Stemp, Electrochemical Methods in Tribocorrosion : a Critical Appraisal, Electrochimica Acta, 46 (2001) 3913-3929. 75. W. Batchelor and G. W. Stachowiak, Predicting Synergism Between Corrosion and Abrasive Wear, Wear, 123 (1988) 281-291. 76. R. B. Diegle, N. R. Sorensen and G. C. Nelson, Dissolution of Glassy Ni-P Alloys in H2SO4 and HCl Electrolytes, Journal of The Electrochemical Society,133 (1986) 1769-1776. 77. R.B. Diegle, N.R. Sorensen, C.R. Clayton, M.A. Helfand and Y.C. Yu, An XPS Investigation into the Passivity of an Amorphous Ni-20P Alloy, Journal of the Electrochemical Society, 135 (1988) 1085-2113. 78. A. Kawashima, K. Asami and K. Hahimoto, Change in Corrosion Behavior of Amorphous Ni-P Alloys by Alloying with Chromium Molybdenum or Tungsten, Journal of Non-Crystalline Solids, 70 (1985) 69-83. 79. A. Kr´olikowski and P. Butkiewicz, Anodic Behavior of Ni-P Alloys Studied by Impedance Spectroscopy, Electrochimica Acta 38 (1993) 1979-1983. 80. A. Kr´olikowski, B. Karbownicka and O. Jaklewicz, Anodic Dissolution of Amorphous Ni-P Alloys, Electrochimica Acta 51 (2006) 6120–6127. 81. A. Kr´olikowski, Nature of Acidic Dissolution of Amorphous Ni-P Alloys, Materials Science Forum, 185-188 (1995) 799-808. 82. H. C. Schenzel and H. Kreye, Improved Corrosion Resistance of Electroless Nickel-phosphorus Coatings, Plating and Finishing 6 (1990) 50-54. 83. G. Salvago, G. Fumagalli and F. Brunella, Corrosion Behaviour of Electroless Ni-P Coatings in Chloride-Containing Environments, Surface and Coating Technology 37 (1989) 449-460. 84. M. Crobu, A. Scorciapino, B. Elsener and A. Rossi, The Corrosion Resistance of Electroless Deposited Nano-Crystalline Ni-P Alloys, Electrochimica Acta 53 (2008) 3364-3370. 85. L. Benea, P. L. Bonora, A. Borello and S. Martelli, Effect of SiC Size Dimensions on the Corrosion Wear Resistance of the Electrodeposited Composite Coating, Materials and Corrosion, 53 (2002) 23-29. 86. C. S. Lin, C. Y. Lee, F. J. Chen, C. T. Chien, P. L. Lin, and W. C. Chung, Electrodeposition of Nickel-Phosphorus Alloy from Sulfamate Baths with Improved Current Efficiency, Journal of the Electrochemical Society, 153 (2006) C387-C392. 87. C. K. Fang, C. C. Huang and T. H. Chuang, Synergistic Effects of Wear and Corrosion for Al2O3 Particulate - Reinforced 6061 Aluminum Matrix Composites, Metallurgical and Materials Transactions A, 30 (1999) 643-651.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10761-
dc.description.abstract本研究採用胺基磺酸鎳溶液經由脈衝電鍍製備鎳磷合金,並於腐蝕磨耗及腐蝕等條件下進行研究。製備電鍍鎳磷合金之鍍層厚度50 μm ~ 60 μm,磷含量9 wt% ~ 10wt%,由TEM觀察鍍層橫截面,鎳磷合金鍍層為層狀組織,層與層間的厚度約為50 nm,每一層狀組織內部包含許多細小鎳或鎳磷奈米晶粒,晶粒大小約3nm ~ 5nm。在5%NaCl溶液,試片表面速度0.21m/s,進行動態電位極化曲線量測,結果顯示鍍層從活性→鈍化→過鈍化的轉變行為,經不同的實驗條件〔溫度(25℃,50℃)、負載(0N,29.4N)〕,當腐蝕溫度上升,對鍍層有加速腐蝕作用;有負載時,摩擦磨耗消除鍍層表面鈍化物,使鍍層保持新鮮表面,使得有負載比無負載之腐蝕電位與腐蝕電流密度略高。 在腐蝕試驗方面,隨腐蝕液溫度與極化電位增加,鍍層表面形貌從細小蝕孔轉變多孔密集的孔蝕,最後孔蝕相繼連結,形成較大的蝕孔且產生裂紋。由鍍層表面形成裂紋,使腐蝕溶液深入鍍層內部,進而腐蝕鎳或鎳磷合金奈米晶粒,形成孔洞,導致鍍層形成層狀剝離。經XPS分析,部分鎳溶解於溶液,使鍍層表面富含磷並形成鈍化膜([PO4]3-),隨極化電位提高,鈍化膜生成隨之增厚,形成薄鈍化膜(低電位)與厚鈍化膜(高電位)。隨鍍層腐蝕更加嚴重,其表面粗糙度、重量損失量及磷含量隨之增加,數據也反應出結果是具有一致性。 在腐蝕磨耗試驗方面,隨腐蝕液溫度與極化電位增加,鍍層表面形貌從只有磨耗刮痕,轉變成鍍層表面除磨耗痕跡外,還有潛藏於磨耗區域內分散於鍍層表面之孔蝕結構,最後蝕孔面積越大且深度加深並形成裂紋。在表面粗糙度、鍍層重量損失與摩擦係數之關聯性,鍍層表面開始受到腐蝕影響造成鍍層局部細微坑洞,相對表面粗糙度及重量損失隨之增加,此時鍍層與磨塊接觸面間產生機械互鎖效應使摩擦係數增加;極化電位提升加速鍍層鈍化膜形成,造成鍍層表面鬆散、裂紋及小孔蝕,使得表面粗糙度增加,同樣地鍍層被磨塊刮掉其重量損失也持續增加。由於鈍化膜生成提供表面潤滑,而鍍層孔蝕提供了溶液滯留於表面,滯留的溶液提供負載支撐和減少鍍層的接觸與磨耗,因此磨擦係數隨極化電位上升而下降。 最後,透過腐蝕磨耗定量分析,鍍層於低極化電位下顯示具耐腐蝕磨耗能力,不太影響鍍層重量損失,而於高溫、高電位下腐蝕、磨耗交互作用是造成鍍層重量損失量之主要原因,並發現腐蝕分量會持續增加,磨耗分量會相繼減少。zh_TW
dc.description.abstractThe performance of Ni-P alloy, prepared by electrodeposition in nickel sulfmate bath with pulse current, in the corrosion and/or wear environment was studied in this thesis. The dynamic polarization curve of the cylindrical specimen measured in 5wt% NaCl solution with tangential surface speed of 0.21 m/s was measured first. The result showed that the gradual transition of the corrosion behavior from active, passive to transpassive as the electric potential was raised. In the meantime, the corrosion resistance of the coating diminished at higher immersion temperature. Accompanying the increase in the applied overpotential, the surface morphology of the specimen after corrosion testing evolved from small pitting into intensive aggregation holes, and finally the big corrosion holes with delamination cracking. The generated cracking near the surface provided the further penetration path for the corrosive solution into the coating. The more vulnerable interfaces in the laminar microsturcture of the coating rendered the preferred corrosion along their paths and the delamination of the laminae was observed. The analysis using XPS showed the more preferred dissolution of Ni into the solution than P. And a passive film ([PO4]3-) rich in P was detected near the surface. At higher overpotentials, the formation of this passivated film became faster and the film thickness increased. In tribocorrosion environment, comparing with its pure corrosion counterparts the weight loss and surface roughness of the coating deteriorated. The surface was more aggressively attacked. However, the corrosion solution provided the enhanced cooling and certain lubrication effect. Moreover, passivated film due to corrosion could be beneficial to the lowering in friction. It was also suspected that the fluid trapped inside the corrosion pits provided load bearing support. All these mechanisms might be in favor of the reduction in friction coefficient of wearing. Finally, the quantitative analysis on the weight loss of the specimen under tribocorrosion environment demonstrated the synergy between the wear and corrosion was not significant for Ni-P coating tested at low overpotential. Nevertheless, at high overpotential and high solution temperature, the synergy constituted the major weight loss under tribocorrosion. The weight loss due to corrosion consistently increased with the overpotential and solution temperature while the weight loss caused by the wearing was mitigated.en_US
dc.description.tableofcontents目次 頁次 封面內頁 審核頁 授權頁 誌 謝 中文摘要……………………………………………………………………………….……………Ⅰ 英文摘要………………………………………………………………………….……………...……Ⅲ 目次……………………………………………………………………………………………..………Ⅴ 表目次………………………………………………………………..…………………………..……Ⅸ 圖目次……………………………………………………………………………..……………..……Ⅹ 符號說明…………………………………………………………………………..…………..……ⅩII 第一章 前言……………………………………………………………………1 一、 研究背景………………………………………………………………1 二、 研究動機與研究架構…………………………………………………2 第二章 文獻探討………………………………………………………………5 一、 電鍍製程相關概論……………………………………………………5 (一) 電鍍基本原理…………………………………………………5 (二) 合金電鍍之電解定律與電流效率………………………………5 (三) 合金共鍍機制……………………………………………………7 (四) 電鍍的電結晶過程………………………………………………8 二、 腐蝕相關概論…………………………………………………………8 三、 磨耗相關概論…………………………………………………………9 四、 腐蝕磨耗相關概論……………………………………………………11 (一) 沖耗腐蝕…………………………………………………………12 (二) 腐蝕磨耗…………………………………………………………12 (三) 鈍化膜在腐蝕磨耗中的作用……………………………………13 (四) 腐蝕磨耗交互作用………………………………………………13 1. 腐蝕磨耗機制………………………………………………13 2. 腐蝕磨耗之定量分析………………………………………14 五、 鎳磷合金鍍層相關研究……………………………………………16 (一) 鍍層電鍍效率…………………………………………………16 (二) 鍍層共鍍機制…………………………………………………17 (三) 鍍層微結構…………………………………………………18 (四) 鍍層之耐腐蝕性……………………………………………19 (五) 鍍層之耐磨耗性……………………………………………21 (六) 鍍層之磨耗腐蝕行為……………………………………………22 第三章 實驗方法……………………………………………………………27 一、 實驗流程規劃…………………………………………………………27 (一) 鎳磷合金電鍍層製程設備架構………………………………27 (二) 腐蝕與腐蝕磨耗試驗……………………………………………27 二、 儀器設備與實驗藥品…………………………………………………28 (一) 電鍍實驗及鍍層分析儀器設備…………………………………28 (二) 鍍層腐蝕、腐蝕磨耗檢測儀……………………………………28 (三) 鍍層性質檢測儀器………………………………………………28 (四) 電鍍製程化學藥品………………………………………………28 三、 鍍層微結構製備與觀察………………………………………………29 (一) 鍍層內應力測試方法……………………………………………29 (二) 微硬度量測方法…………………………………………………30 (三) 鍍層表面粗糙度量測……………………………………………30 (四) 鍍層成份分析及觀察之試片製作………………………………31 (五) X光繞射儀試片製作……………………………………………31 (六) X-光光電子能譜分析……………………………………………31 (七) 穿透式電子顯微鏡試片製作與觀察……………………………32 四、 腐蝕磨耗交互作用定量分析與量測方法……………………………33 第四章 實驗結果………………………………………………………………37 一、 鎳磷合金電鍍層成份與性質量測……………………………………37 二、 鎳磷合金電鍍層腐蝕行為…………………………………………38 (一) 電化學量測……………………………………………………38 (二) 鍍層腐蝕形貌………………………………………………38 (三) 鍍層的腐蝕機制……………………………………………40 三、 鎳磷合金電鍍層腐蝕磨耗行為………………………………………42 (一) 電化學量測…………………………………………………42 (二) 鍍層腐蝕磨耗之表面形貌…………………………………43 第五章 討論……………………………………………………………………56 一、 鍍層腐蝕機制研析……………………………………………………56 二、 鍍層腐蝕磨耗機制研析………………………………………………58 (一) 鈍化膜結構在腐蝕溶液影響……………………………………58 (二) 腐蝕溶液對磨耗的影響…………………………………………59 三、 鍍層腐蝕與磨耗交互作用……………………………………………60 (一) 腐蝕與摩擦係數之關聯性………………………………………60 (二) 腐蝕與磨耗交互作用分析………………………………………61 第六章 結論與展望……………………………………………………………………77 一、 結論………………………………………………………………………….……………77 二、 展望……………………………………………………………………………….………78 參考文獻……………………………………………………………………………………………80 博士進修期間發表論著………………………………………………………………………..90 個人簡歷……………………………………………………………………………………………91 表目次 頁次 表2.1 電鍍反應之基本氧化與還原反應式…………………………………25 表2.2鎳磷合金直接共鍍反應機制…………………………………………25 表2.3鎳磷合金間接共鍍反應機制…………………………………………25 表3.1 電鍍鎳磷合金之鍍液組成及操作條件………………………………34 表4.1 電鍍鎳磷合金之厚度、硬度、重量及電流效率……………………46 表4.2 鎳磷合金經腐蝕後之表面粗糙度、重量損失、磷含量結果………46 表4.3 鎳磷合金經腐蝕磨耗後之表面粗糙度、摩擦係數、重量損失及磷含量結果…………………………………………………………………47 表5.1 鎳磷合金以不同腐蝕電位對腐蝕及腐蝕磨耗之電流密度與重量損失………………………………………………………………………64 表5.2 鎳磷合金經腐蝕後之電流密度和重量損失結果……………………65 表5.3 磷合金經腐蝕磨耗後之電流密度、摩擦係數、重量損失和表面粗糙度結果…………………………………………………………………66 表5.4 鎳磷合金在NaCl溶液中腐蝕磨耗時腐蝕、磨耗交互作用的結果…67 圖目次 頁次 圖1.1電鍍鎳磷合金鍍層之腐蝕磨耗性質研究架構………………………4 圖2.1 電鍍反應過程示意圖…………………………………………………26 圖2.2鎳磷合金平衡相圖…………………………………………………26 圖3.1鎳磷合金電鍍層之製程與分析流程圖……………………………35 圖3.2 鎳磷合金電鍍層設備架構…………………………………………36 圖3.3 鎳磷合金電鍍層腐蝕磨耗設備架構………………………………36 圖4.1 (a)電鍍鎳磷合金表面形貌 (b)電鍍鎳磷合金橫截面………………48 圖4.2 電鍍鎳磷合金試片之XRD分析結果…………………………………48 圖4.3 電鍍鎳磷合金鍍層橫截面TEM(a)暗視野、(b)擇區繞射圖、(c)高解析……………………………………………………………………49 圖4.4 電鍍鎳磷合金之動態電位極化曲線…………………………………49 圖4.5 在5%NaCl溶液中腐蝕之FESEM觀察:(a) 25℃, OCP ; (b) 25℃, +600mVSCE; (c) 50℃, OCP (d) 50℃, -40mVSCE (e) 50℃, +200mVSCE (f) 50℃, +600mVSCE; (g) 50℃, +200mVSCE 橫截面圖; (h) 50℃, +600mVSCE橫截面圖……………………………………………………50 圖4.6 鎳磷合金鍍層在5%NaCl溶液之XPS分析(a)磷結合能,(b)鎳結合能,縱深分析,(c)鎳,(d)磷,(e)氧,(f) 50℃NaCl,+200 mV磷結合能…51 圖4.7 TEM觀察(a)鎳磷合金鍍層之橫截面,(b)經50℃NaCl,+600 mVSCE鎳磷合金鍍層橫截面,(c)放大圖,(d)HR-TEM觀察箭頭指的地方(c).52 圖4.8 鎳磷合金之腐蝕、腐蝕磨耗動態電位極化曲線與摩擦係數………53 圖4.9 FESEM觀察鎳磷合金在25℃(a)OCP (b) -40mVSCE (c) +200 mVSCE (d) +600mVSCE ,50℃(e) OCP (f) -40 mVSCE (g) +200 mVSCE(g)+600 mVSCE之腐蝕磨耗……………………………………………………………54 圖4.10 在NaCl溶液中進行磨耗之摩擦係數………………………………55 圖5.1 鎳磷合金在不同腐蝕電位與溫度下每單位重量損失量……………68 圖5.2 XPS分析鍍層腐蝕表面成份縱深分佈:(a) 25℃、OCP (b) 50℃、+200 mVSCE………………………………………………………………69 圖5.3 XPS分析腐蝕鍍層表面不同電位之鎳、磷、氧元素比值…………70 圖5.4 5%NaCl腐蝕鎳磷合金表面進行XPS curve fitting分析(a),(b),(c)P 2p、(d),(e),(f) Ni 2p、(g),(h)O 1s成份…………71 圖5.5 在25℃和50℃以OCP進行腐蝕對鍍層之重量損失與腐蝕形貌觀察.72 圖5.6 不同腐蝕電位、溫度之腐蝕時間與腐蝕電流密度關係………………73 圖5.7 在25℃和50℃以OCP進行腐蝕對鍍層之重量損失與腐蝕形貌觀察.74 圖5.8 鎳磷合金鍍層進行腐蝕磨耗之磨耗距離與腐蝕電流密度關係……75 圖5.9 腐蝕電位對腐蝕磨耗示意圖…………………………………………76 圖5.10 腐蝕電位對腐蝕磨耗交互作用影響…………………………………76zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.subjectNi-P alloyen_US
dc.subject鎳磷合金zh_TW
dc.subjectcorrosionen_US
dc.subjecttribocorrosionen_US
dc.subjectpassive filmen_US
dc.subject腐蝕zh_TW
dc.subject腐蝕磨耗zh_TW
dc.subject鈍化膜zh_TW
dc.title鎳磷合金電鍍層之腐蝕磨耗行為研究zh_TW
dc.titleA Study on the Corrosion and Wear Behavior of Ni-P Electrodeposited Coatingsen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
Appears in Collections:材料科學與工程學系
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.