Please use this identifier to cite or link to this item:
標題: 多元合金應用於硬面銲覆之顯微結構與磨耗性質之研究
The study of microstructure and wear properties of multi-component alloy used in hardfacing technology
作者: 陳界豪
Chen, Jie-Hao
關鍵字: hardfacing;硬面銲覆;multi-component alloy;abrasive wear;adhesive wear;多元合金;乾砂磨耗;黏著磨耗
出版社: 材料科學與工程學系所
引用: [1] X.H. Wang, Z.D. Zou, S.Y. Qu, “Microstructure of Fe-Based Alloy Hardfacing Coating Reinforced by TiC-VC Particles,” Journal of Iron and Steel Research International, Vol.13, No.4, pp.51-55, 2006. [2] X.H. Wang, F. Han, X.M. Liu, S.Y. Qu, Z.D. Zou, “Effect of molybdenum on the microstructure and wear resistance of Fe-based hardfacing coatings, “Materials Science and Engineering A, Vol.489, No.1-2, pp.193-200, 2008. [3] K. Gurumoorthy, M. Kamaraj, K.P. Rao, A.S. Rao, S. Venugopal, “ Microstructural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy,” Materials Science and Engineering: A, Vol.456, No.1-2, pp.11-19, 2007. [4] C.P. Paul, A. Jain, P. Ganesh, J. Negi, A.K. Nath, “Laser rapid manufacturing of Colmonoy-6 components,” Optics and Lasers in Engineering, Vol.44, No.10, pp.1096-1109,2006. [5] M.X. Yao, J.B.C. Wu, Y. Xie, “Wear, corrosion and cracking resistance of some W- or Mo-containing Stellite hardfacing alloys,” Materials Science and Engineering: A, Vol.407, No.1-2, pp.234-244, 2005. [6] S.C. Agarwal, H. Ocken, “The microstructure and galling wear of a laser-melted cobalt-base hardfacing alloy,” Wear, Vol.140, No.2, pp.223-233, 1990. [7] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, ”Nanostructured High Entropy Alloys with Multiple Principle Elements:Novel Alloy Design Concepts and outcomes,” Advanced Engineering Materials, Vol.6, No.5, pp.299-303, 2004 [8] J. W. Yeh, S. K. Chen, J. Y. Gan, S. J. Lin and S. Y. Chang, “Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements,” Metallurgical and materials transactions A, vol.35, pp.2533-2536, 2004. [9] T.K. Chen, M.S. Wong, T.T. Shun, J.W. Yeh, “Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering,” Surface & Coatings Technology, Vol.200 pp.1361-1365,2005. [10] J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements,” Materials Chemistry and Physics Vol.103 pp.41-46,2007. [11] Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih, “Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel,” Corrosion Science, Vol.47, No.9, pp. 2257-2279,2005. [12] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, “Wear Resistance and High-Temperature Compression Strength of Fcc CuCoNiCrAl0.5Fe Alloy with Boron Addition,” Metallurgical and materials transactions A, Vol.35A, pp.1465-1469, 2004. [13] C.J. Tong, M.R. Chen, S.K. Chen, “Mechanical Performance of the AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements,” Metallurgical and materials transactions A, Vol.36A, pp.1263-1271, 2005. [14] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, “Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating,” Advanced engineering materials, Vol.6, No.1-2, pp.74-78, 2004. [15] C.Z. Yao, P. Zhang, M. Liu, G.R. Li, J.Q. Ye, P. Liu, Y.X. Tong, “Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high entropy alloy,” Electrochimica Acta, Vol. 53, No.28, pp.8359-8365, 2008. [16] Y.J. Hsu, W.C. Chiang, J.K. Wu,” Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution, ”Materials Chemistry and Physics, Vol.92, No.1, pp.112-117, 2005. [17] C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, H.C. Shih, “Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid,” Thin Solid Films, Vol. 517, pp.1301-1305, 2008. [18] J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, H.C. Chen, “Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content,” Wear, Vol.261, pp.513-519, 2006. [19] 陳敏睿,”添加V、Si、Ti對Al0.5CrCuFeCoNi高熵合金微結構與磨耗性質之影響”,國立清華大學材料科學工程學系碩士論文,民國92年。 [20] Faith Reidenbach, ASM handbook; volume 5:surface engineering, 10th Ed, ASM International, pp3-12, OH, 1990. [21] S. Babu, V. Balasubramanian, G. Madhusudhan Reddy, T.S. Balasubramanian, “Improving the ballistic immunity of armour steel weldments by plasma transferred arc (PTA) hardfacing,” Materials & Design, Vol.31, No.5, pp.2664-2669, 2010. [22] V Balasubramanian, A.K. Lakshminarayanan, R. Varahamoorthy, S. Babu, “Application of Response Surface Methodolody to Prediction of Dilution in Plasma Transferred Arc Hardfacing of Stainless Steel on Carbon Steel,” Journal of Iron and Steel Research International, Vol.16, No.1, pp.44-53, 2009 [23] Y.S. Tarng, S.C. Juang, C.H. Chang, “The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing,” Journal of Materials Processing Technology,” Vol.128, No.1-3, pp.1-6, 2002. [24] X.H. Wang, S.L. Song, Z.D. Zou, S.Y. Qu, “Fabricating TiC particles reinforced Fe-based composite coatings produced by GTAW multi-layers melting process,” Materials Science and Engineering: A, Vol.441, No.1-2, pp.60-67, 2006. [25] J.J. Coronado, H.F. Caicedo, A. L. Gómez, “The effects of welding processes on abrasive wear resistance for hardfacing deposits,” Tribology International, Vol.42, No.5, pp.745-749, 2009. [26] [27] L. Fouilland, M. E Mansori, M. Gerland, “Role of welding process energy on the microstructural variations in a cobalt base superalloy hardfacing,” Surface and Coatings Technology, Vol.201, No.14, pp.6445-6451, 2007. [28] T. Takasugi, N. Masahashi, O. Izumi, “Improved ductility and strength of Ni3Al compound by beryllium addition,” Scripta Metallurgica, Vol.20, No.10, pp.1317-1321, 1986. [29] D. Shechtman, M.J. Blackburn, H.A. Lipsitt, “Plastic deformation of TiAl,” Metallurgical Transactions, Vol.5, No.6, pp.1373-1381, 1974. [30] C.T. Liu, C.G. McKamey, E.H. Lee, “Environmental effects on room-temperature ductility and fracture in Fe3Al,” Scripta Metallurgica et Materialia, Vol.24, No.2, pp.385-389, 1990. [31] M. Yamaguchi, Y. Umakoshi, ” The deformation behaviour of intermetallic superlattice compounds,” Progress in Materials Science, Vol.34, No.1, pp.1-148, 1990. [32] R. Norling, I. Olefjord, “Erosion–corrosion of Fe- and Ni-based alloys at 550°C,” Wear, Vol.254, No.1-2, pp.173-184, 2003. [33] I.A. Choudhury, M.A. E. Baradie, “Machinability of nickel-base super alloys: a general review,” Journal of Materials Processing Technology, Vol.77, No.1-3, 1pp.278-284, 1998. [34] X.B. Liu, H.M. Wang, “Modification of tribology and high-temperature behavior of Ti–48Al–2Cr–2Nb intermetallic alloy by laser cladding,” Applied Surface Science, Vol.252, No.16, pp.5735-5744, 2006. [35] S Nourbakhsh, P Chen, “Microstructure and mechanical properties of rapidly solidified and annealed Ni-Al intermetallic alloys,” Acta Metallurgica, Vol.37, No.6, pp.1573-1583, 1989. [36] E. Arzt, E. Göhring, “A model for dispersion strengthening of ordered intermetallics at high temperatures,” Acta Materialia, Vol.46, No.18, pp.6575-6584, 1998. [37] H.Q. Ye, “Recent developments in high temperature intermetallics research in China,” Intermetallics, Vol.8, No.5-6, pp.503-509, 2000. [38] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” Acta Materialia, Vol.48, No.1, pp.279-306, 2000. [39] D.V. Louzguine, A.R. Yavari, A. Inoue, “Mischmetal as an alloying addition to amorphous materials and glass formers,” Journal of Non-Crystalline Solids, Vol.316, No.2-3, pp.255-260, 2003. [40] A. Inoue, “Bulk amorphous and nanocrystalline alloys with high functional properties,” Materials Science and Engineering A, Vol.304-306, Vol.31, pp.1-10, 2001. [41] U.S. Hsu, U.D. Hung, J.W. Yeh, S.K. Chen, Y.S. Huanga, C.C. Yang, ” Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys,” Materials Science and Engineering A, Vol.460-461, pp.403–408, 2007. [42] B.S. Li, Y.P. Wang, M.X. Ren, C. Yang, H.Z. Fu, “Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy,” Materials Science and Engineering: A, Vol.498, No.1-2, pp.482-486, 2008. [43] A.L. Greer, “Confusion by design,” Nature, Vol.366, pp.303-304, 1993. [44] C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, “Microstructure Characterization of AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements,”Metallurgical and materials transactions A, Vol.36A, pp.881-893, 2005. [45] J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T. S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang,” Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements, Metallurgical and materials transactions A, Vol.35A, pp.2533-3536, 2004. [46] 郭彥甫,”Al-Cr-Fe-Mn-Ni高熵合金變形及退火行為之研究”,國立清華大學材料科學工程學系碩士論文,民國93年。 [47] 蔡哲瑋,”CuCoNiCrAlxFe高熵合金加工變形及微結構之探討”,國立清華大學材料科學工程學系碩士論文,民國91年。 [48] 洪育德,”Cu-Ni-Al-Co-Cr-Fe-Si-Ti 高亂度合金之探討”,國立清華大學材料科學工程學系碩士論文,民國89年。 [49] N.F. Mott, “Mechanical properties of metals,” Physica, Vol.15, No.1-2, pp.119-134, 1949. [50] T. Ohmura, R.M. Pelloux, N.J. Grant, “High temperature fatigue crack growth in a cobalt base superalloy,” Engineering Fracture Mechanics, Vol.5, No.4, pp.911-922, 1973. [51] R.L. Fleischer, “Substitutional solution hardening,” Acta Metallurgica, Vol.1, No.3, pp.203-209,1963. [52] X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen, “Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys,” Intermetallics, Vol.15, No.3, pp.357-362,2007. [53] M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen,; Y.S Huang, C.P. Tu, “Microstructure and properties of Al0.5CoCrCuFeNiTix (x = 0-2.0) high-entropy alloys,” Materials Transactions, Vol.47, No.5, pp.1395-1401, 2006. [54] C.Y. Hsu, T.S. Sheu, J.W. Yeh, S.K. Chen, ”Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys,” Wear, Vol.268, pp.653-659, 2010. [55] M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, M.H. Chuang, “ Effect of Vanadium Addition on the Microstructure, Hardness, and Wear Resistance of Al0.5CoCrCuFeNi High-Entropy Alloy,” Metallurgical and materials transactions A, Vol.37A, pp.1363-1369, 2006. [56] J. Kramer, Z. Physics, Vol.106, pp.639-642, 1937. [57] P. Duwes, Transaction American society metals, Vol.60, pp.607-611, 1967. [58] A. Inoue, T. Zhang, T. Masumoto, “Glass-forming ability of alloys,” Journal of Non-Crystalline Solids,” Vol.156-158, pp.473-480, 1993. [60] R. Amini, H. Shokrollahi, E. Salahinejad, M.J. Hadianfard, M. Marasi, T. Sritharan, “Microstructural, thermal and magnetic properties of amorphous/nanocrystalline FeCrMnN alloys prepared by mechanical alloying and subsequent heat treatment,” Journal of Alloys and Compounds, Vol.480, No.2, pp.617-624, 2009. [61] M. Gögebakan, O. Uzun, “Thermal stability and mechanical properties of Al-based amorphous alloys,” Journal of Materials Processing Technology, Vol.153-154, pp.829-832, 2004. [62] L.Q. Xing, C. Bertrand, J.P. Dallas, M. Cornet, “Nanocrystal evolution in bulk amorphous Zr57Cu20Al10Ni8Ti5 alloy and its mechanical properties,” Materials Science and Engineering A, Vol.241, No.1-2, pp.216-225, 1998. [63] DIN 50320︰Wear; Terms. Systematic Analysis of Wear Processes. Classification of Wear Phenomena, Verschleiss -Begriffe, Analyse von Verschleissvorgangen, Gliederung des Verschleissgebietes. Beuth Verlang, Berlin, 1979. [64] 莊東漢,材料破損分析,五南書局,第86-87頁,民國96年。 [65] K.H.Z. Gahr, “Microstructure and wear of materials,” 1stEd, Elsevier science publishing compony, New York, pp.80-85, 1987. [66] H. Mishina, “Surface deformation and formation of original element of wear particles in sliding friction, Wear, Vol.215, pp.10-17, 1998. [67] K.H.Z. Gahr, “Microstructure and wear of materials,” 1stEd, Elsevier science publishing compony, New York, pp.166-167, 1987. [68] E. Hornboge, “The role of fracture toughness in the wear of metals,Wear, Vol.33, pp.251-259, 1975. [69] A.G. Evans, T.R. Wilshaw, “Quasi-static solid particle damage in brittle solids—I. Observations analysis and implications,” Acta Metallurgica, Vol. 24, No.10, pp.939-956, 1976. [70] [71] J.F. Archard, “Friction between metal surfaces,” Wear, Vol.13, pp.3-16, 1986. [72] [73] R.E. Reed-Hill, R. Abbaschian, ‘Physical Metallurgy Principles, 3rdEd, PWS Publishing Company, Boston, pp.90-91, 1994. [74] P.G. Stachowiak, G.W. Stachowiak, P. Podsiadlo, “Automated clasification of wear particles based on their surface texture and shape features,” Tribology International, Vol.41, pp.34-43, 2008. [75] 機械工程手冊編輯委員會,金屬材料,五南圖書出版公司,第6-5 – 6-6頁,民國91年。 [76] X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, K. Lu, “Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of AL-alloy subjected to USSP,” Acta Materialia, Vol.50, No.8, pp.2075-2084, 2002. [77] American Society for Testing and Materials, “Annual book of ASTM standards,” Philadelphia, 1990. [78] [79] Y.L. Chen, Y.H. Hu, C.W. Tsai, J.W. Yeh, S.K. Chen, S.Y. Chang, “Structural evolution during mechanical milling and subsequent annealing of Cu–Ni–Al–Co–Cr–Fe–Ti alloys,” Materials Chemistry and Physics, Vol.118, No.2-3, pp.354-361, 2009. [80] X.Y. Li, K.N. Tandon, “Amorphization and precipitation within the amorphous layer induced by dry sliding wear of an Al-Si/SiCp composite material,” Acta Materialia, Vol. 44, No.9, pp.3611-3624,1996. [81] X.Y. Li, K.N. Tandon, “Formation of an amorphous phase of All---Si during dry wear of a All-Si/SiCp composite,” Scripta Metallurgica et Materialia, Vol.33, No.3, pp.485-490, 1995. [82] Z.C. Feng, K.N. Tandon, “Behavior of surface layers during the reciprocating wear of SiC-Al/Si metal matrix composites,” Scripta Metallurgica et Materialia, Vol.32, No.4, pp.Pages 523-528,1995. [83] Y. Wang, C.Q. Gao, T.C. Lei, H.X. Lu, “Amorphous structure of worn surface in 52100 steel,” Scripta Metallurgica, Vol., No.8, pp.1251-1254, 1988. [84] Y. Wang, T.C. Lei, C.Q. Gao, “An observation of a filiform wear product in bearing steel 52100,” Wear, Vol.134, No.2, pp.231-236, 1989. [85] Y. Wang, X.D. Li, Z.C. Feng, “The relationship between the product of load and sliding speed with friction temperature and sliding wear of a 52100 steel,” Scripta Metallurgica et Materialia, Vol.33, No.7, pp.1163-1168, 1995. [86] Y. Wang, T. Lei, M. Yan, C. Gao, “Frictional temperature field and its relationship to the transition of wear mechanisms of steel 521 00,” Journal of Physics. D: Applied. Physics. Vol.25, pp.l65-l69, 1992. [87] Y. Wang, C. Gao, D. Wang, “A study of the formative mechanism of spherical wear particles,” Wear, Vol.108, No.3, pp.285-294, 1986. [88] S.C. Lim, M.F. Ashby, “Overview no. 55 Wear-Mechanism maps,” Acta Metallurgica, Vol.35, No.1, pp.1-24, 1987. [89] [90] Y. Hidaka, T. Anraku, N.Otsuka, “Deformation of iron oxides upon tensile tests at 600-1250℃,” Oxidation of Metals, Vol.59, No.1-2, pp.97-113, 2003. [91] S.M. Kuo, D.A. Rigney, “Sliding behavior of aluminum,” Materials Science and Engineering: A, Vol.157, No.2, pp.131-143, 1992. [92] P. Heilmann, W.A.T. Clark, D.A. Rigney, “Orientation determination of subsurface cells generated by sliding,” Acta Metallurgica, Vol.31, No.8, pp.1293-1305, 1983. [93] D.A. Rigney, M.G.S. Naylor, R. Divakar, L.K. Ives, “Low energy dislocation structures caused by sliding and by particle impact,” Materials Science and Engineering, Vol.81, pp.409-425, 1986. [94] E. Evangelista, H.J. McQueen, E. Bonetti, “Interaction between (MnFe)Al6 particles and substructures formed during hot working of Al-5Mg-0.8Mn alloy,” Proc. 4th Riso Int. Symp. on Metallurgy and Materials Science: Deformation of Multi-Phase and Particle-Containing Materials, Risø, Risø,1983. [95] H.J. McQueen, O. Knustad, N. Ryum, J.K. Solberg, “Microstructural evolution in Al deformed to strains of 60 at 400°C,” Scripta. Metallurgica. Vol.19, pp.73-78, 1985. [96] P.J.T. Stuitje, G. Gottstein, Recrystallization texture development in tensile deformed silver single crystals,” Textures of Materials, Springer, Berlin, 1978, pp.511-519. [97] G. Gottstein, Dynamic recrystallization of Cu single crystals during tensile deformation in creep,“ Metal Science. Vol.17, pp.497-502, 1983. [98] G. Gottstein, D. Zabardjadi, H. Mecking, “Dynamic recrystallization in tension-deformed copper single crystals,” Metal Science. Vol.13, pp.223-227, 1979 [99] L. Blaz, T. Sakai, J.J. Jonas, ”Effect of initial grain size on dynamic recrystallization of copper,” Metal Science, Vol17, pp.609-613., 1983. [100] T. Sheppard, N.C. Parson, M.A. Zaidi, “Dynamic recrystallization in Al-7Mg alloy,” Metal. Science, Vol.17, pp.481-490, 1983. [101] P. Faivre, R.D. Doherty, “Nucleation of recrystallization in compressed aluminum: studies by electron microscopy and Kikuchi diffraction,” Journal of material. Science, Vol.14, pp.897-919, 1979. [102] A.T. Alpas, H. Hu, J. Zhang, “Plastic deformation and damage accumulation below the worn surfaces,” Wear, Vol.162-164, pp.188-195, 1993. [103] F.R. Deboer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, “Cohesion in metals; transition metal alloys,” North-Holland Physics, New York, pp.179-314, 1988. [104] Y. Zhang, Y. Zhou, “Solid solution formation criteria for high entropy alloys,” Materials Science Forum, Vol.561-565, pp.1337-1339, 2007. [105] A. Takeuchi, A. Inoue, “Quantitative evaluation of critical cooling rate for metallic glasses,” Materials Science and Engineering A, Vol.304-306, pp.446-451, 2001 [106] R.C.D. Richardson, “The abrasive wear of metals Wear,” Vol.14, No.4, pp.290-291, 1969. [107] R.A.Swalin, “Thermodynamics of solids,” 2nd Ed, Wiley-interscience, New York, pp.114-116, 1984.
抗黏著磨耗能力FeCoCrNiMo1.0銲覆層比FeCoCrNi提升了9.3倍,主要原因為磨耗機制的不同,FeCoCrNi為嚴重的塑性變形脫落,而FeCoCrNiMo1.0則為溫和的氧化機構。以TEM觀察FeCoCrNi縱向銲覆層磨耗面的變形隨著應變的增加可以觀察到差排胞、微帶(micro band)、奈米長軸晶、奈米等軸晶的演變順序,而FeCoCrNiMo1.0則可以觀察到差排胞與微帶的存在。
Al加入FeCoCrNiMo1.0銲覆層後使結構由FCC+σ轉而形成BCC+σ,而Si的添加會促使銲覆層形成一FeMoSi矽化物的樹枝晶與一BCC枝晶間相,而BCC相的結構隨著Si的增加會由板牆狀的結構轉為有序奈米圓形析出相。當矽化物為枝條狀時容易因刮損產生裂紋並且不具支撐的能力,伴隨BCC相產生嚴重的塑性變形而脫落。當矽化物為輻射狀時則能有效抵抗刮損磨耗的犁耕作用,雖然會有裂紋的形成,但是周圍的BCC相能抑制矽化物裂紋的傳播,達到相互保護的作用,降低刮損磨耗損失。而在縱深(cross section)磨耗面枝晶間的區域可以發現FeAlO3氧化物的生成,矽化物的表面則沒有氧化物的形成。

The study investigated the effect of different Mo content on FeCoCrNi alloy cladding and the effect of different Si content on FeCoCrNiMoAl alloy cladding. A surface of composite cladding reinforced by a multi-component alloy filler on low-carbon steel was prepared. A Gas tungsten arc welding (GTAW) heat source was used for this task under a nonoxidizing atmosphere protected by argon gas flow to formed the multi-component alloy claddings. The purpose of the study is to discussed systematically the microstructure, mechanical properties, and wear mechanism of claddings.
The results indicated the FeCoCrNi based cladding contained a FCC phase. At low Mo content, the structure of claddings still contained a FCC phase. At high Mo content, the structure of claddings contained a FCC+σ phase. The microhardness of FeCoCrNiMo1.0 is 2.1 times than FeCoCrNi, and the abrasive wear lost is improved form 0.9 to0.6(mg/mm2). The CrNiO4 and NiCr2O4 oxidations were formed in FeCoCrNiMo0.2 and CoCrNiMo1.0 claddings, respectively.The adhesive wear resistance of FeCoCrNiMo1.0 cladding is 9.3 times than FeCoCrNi cladding due to the different wear mechanism. The mechanism of FeCoCrNi cladding is sever plastic deformation and of FeCoCrNiMo1.0 is mild oxidation mechanism. The TEM analysis can observed the formation of dislocation cells, lamellar microband, nano elongated grains and nano equiaxed grains as increasing wear strain.
The addition of Al in FeCoCrNiMo1.0 cladding changed the microstructure from FCC+σ to BCC+σ phase, and the addition of Si in FeCoCrNiMoAl cladding changed the microstructure from BCC+σ to BCC+FeMoSi silicide. When the silicides was in branch dendrite, it can not resist the abrasion wear from dry sand and easily caused sever plastic deformation with BCC interdendrite to fracture. When the silicide was in radiated dendrites, it can resist the abrasion form dry sand and caused slight plastic deformation in surface. Even cracks formed in radiated dendrite but the BCC interdendrite with modulated plates restrained the cracks propagated, this intention made the cladding has higher abrasive wear resistance. The FeAlO3 oxidation was observed in local BCC interdendrite region but no oxidation formed in silicide dendrite.
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.