Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorLin, Fang-Juen_US
dc.identifier.citation1. M. Balkanski, Solar Energy Materials & Solar Cells, 62 (2000) 21 2. N. J. Dudney, B. J. Neudecker, Current Opinion in Solid State and Materials Science, 4 (1999) 479. 3. M.P. Vinod, D. Bahnemann, J Solid State Electrochem, 6: (2002) 498–501. 4. C. H. Park, M. Park, S. I. Yoo, S. K. Joo, Journal of Power Sources 158 (2006) 1442–1446. 5. 6. W. Y. Liu, Z. W. Fu, Q. Z. Qin, Thin Solid Films, 515 (2007) 4045. 7. C. L. Li, B. Zhang, and Z. W. Fu, J. Electrochem. Soc., 153 (9) (2006) E160. 8. S. D. Jones, J. R. Akridge, Solid State Ionics, 86-88 (1996) 1291. 9. B. J. Neudecker, R. A. Zuhr, J. B. Bates, J. Power Sources, 81–82 (1999) 27. 10. J. Scfoonman, E. M. Kelder, J. Power Sources, 68 (1997) 65. 11. N. Kuwata, R. Kumar, K. Toribami, T. Suzuki, T. Hattori, J. Kawamura, Solid State Ionics, 177 (2006) 2827. 12. H. Kikuchi, M. Kitano, M. Takeuchi, M. Matsuoka, M. Anpo, P.V. Kamat, J. Phys. Chem., B110 (2006) 5537-5541. 13. M. P. Vinod, D. Bahnemann, J. Solid State Electrochem., 6 (2002) 498. 14. R. P. Raffaelle, J. D. Harris, D. Hehemann , D. Scheiman, G. Rybicki, A. F. Hepp, J. Power Sources, 89 (2000) 52. 15. J. Schwenzel, V. Thangadurai, W. Weppner, J. Power Sources, 154 (2006) 232. 16. W. H. Ho, S. K. Yen, Thin Solid Films, 498 (2006) 80-84. 17. W. H. Ho, S. K. Yen, J. Electrochem. Soc. , A506 (2005) 152. 18. W.H. Ho, S.K. Yen, J. Electrochem. Solid-State Lett., C134 (2005) 8. 19. H. C. Liu, S. K. Yen, J. Power Sources, 159 (2006) 245. 20. W. H. Ho, S. K. Yen, Surf. Coat. Technol., 201 (2007) 7100. 21. H. C. Liu, S. K. Yen. J. Power Sources, 166 (2007) 478. 22. W. H. Ho, C. F. Li, H. C. Liu, S. K.Yen, J. Power Sources, 175 (2008) 897. 23. B.B.Owens, Stefano Passerini etc., Electrochimica Acta, 45 (1999) 215. 24. Y.J.Park, J.G.Kim, M.K.Kim, H.T.Chung, H.G.Kim, Solid State Ionics , 130 (2000) 203. 25. N.Kuwata, J. Kawamura etc., Electrochemistry Communications, 6 (2004) 417-421. 26. S. K. Yen, Y. P. Chiang, Master Thesis, 2001. 27. S. H Lee, P. Liu, C. E. Tracy, Electrochemical and Solid-State Letters, 6 (12) (2003) A275-A277. 28 W. Y Liu, Z.W Fu, Q.Z Qin, Journal of The Electrochemical Society, 155 (1) (2008) A8-A13. 29. B. J. Neudecker, N. J. Dudney, J. B. Bates, Journal of The Electrochemical Society, 147 (2) (2000) 517-523. 30. J. Haber, T. Machej, L.Ungier, J. Ziolkowski, Journal of Solid State Chemistry, 25 (1978) 207-218. 31. G. Ertl, R. Hierl, H. Knozinger, N. Thiele, H.P. Urbach, Applications of Surface Science, 5 (1980) 49-64. 32. T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, A. Baghizadeh, M. Lameii, Applied Surface Science, 255 (2008) 2730–2734. 33. S. Shiraishi, K. Kanamura, Z. I. Takehara, Journal of Applied Electrochemistry 29 (1999) 869-881,. 34. I. Ismail, A. Noda, A. Nishimoto, M. Watanabe, Electrochimica Acta 46 (2001) 1595–1603. 35. S. Tanaka, M. Taniguchi, H. Tanigawa, Journal of Nuclear Materials, 283-287 (2000) 1405-1408. 36.劉力堯, 顏秀崗, 國立中興大學材料與工程學系碩士學位論文, (2005)zh_TW
dc.description.abstract本研究將銅箔代替傳統的金屬鋰製備LiMn2O4/LiClO4/Cu薄膜鋰離子電池。利用XRD、FESEM、XPS 與CV及充放電測試分析特性研究。FESEM觀察顯示LiMn2O4薄膜呈現均勻之表面型態。XPS分析顯示第一圈充電銅箔含有8.3%的鋰。半電池經循環伏安(CV)測試,氧化電位為2.59、2.85、3.34與3.60V,還原電位為3.15、2.15和1.21V。充放電測試顯示電流密度為10μA/cm2第1圈電容量為40 mAh/g充放電20圈後電容量僅剩17 mAh/g。相較於鋰金屬,銅電極會與LiClO4電解質作用形成CuO (Cu+ClO4→CuO+ClO3 )。在充電過程中又將其還原成銅而本身部分形成Li2O (CuO+2Li++2e-→Cu+Li2O )而喪失部分之電容量,選擇某種不與LiClO4產生氧化反應的金屬電極可能可以改善電容量。zh_TW
dc.description.abstractUsing copper (Cu) substitute for replacing conventional metallic Li, thin-film lithium-ion batteries LiMn2O4/LiClO4/Cu were prepared of. They were further characterized by X-ray diffraction (XRD), FE-SEM, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and charge-discharge cyclic tests. The LiMn2O4 film surface morphology was uniform by FESEM observations. XPS analysis showed that lithium content on the copper foil the first cycle charging was 8.3%. The CV measurement showed oxidation peaks at 2.59, 2.85, 3.34 and 3.60 V, and reduction peaks at 3.15, 2.15 and 1.21 V. The first discharge capacity was 40mAh/g and degraded to 17mAh/g at 20th cycle at current density 10μA/cm2. Compared with Li metal anode, Cu was oxidized into CuO by LiClO4 strong oxidizer (Cu+ClO4→CuO+ClO3 ). During the charging, the reduction of Li+ was partially replaced by the reduction of Cu (CuO+2Li++2e-→Cu+Li2O ), therefore, resulting in the loss of capacity. Selecting a metal anode which will not be oxidized by the electrolyte could improve the reversible capacity.en_US
dc.description.tableofcontents摘要 i Abstract ii Contents iii Table contents iv Figure contents v 1. Introduction1 2. Experimental4 2.1 Substrate preparation4 2.2 Cathodic polarization tests and deposition4 2.3 XRD and SEM5 2.4 Electrochemical performance5 2.5 ESCA5 3. Results and discussion7 3.1 Cathodic reactions7 3.2 Phase transformation and surface morphology8 3.3 Cyclic voltammetry (CV) studies9 3.4 Charge-discharge studies and ESCA10 4. Conclusion34 Reference 35zh_TW
dc.subjectThin-film lithium-ion batteriesen_US
dc.subjectLiMn2O4 filmen_US
dc.subjectCopper foilen_US
dc.titleLiMn2O4/LiClO4/Cu 薄膜鋰離子電池之特性研究zh_TW
dc.titleCharacterization of LiMn2O4/LiClO4/Cu for Lithium-Ion Thin-Film Batteryen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:材料科學與工程學系
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.