Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10860
標題: Ir奈米微粒修飾電極之拋棄式生物感測器於二酸甘油酯之電化學檢測
Electrochemical Determination of Diglyceride Using an Iridium Nano-particle Based Single Use, Disposable Biosensor
作者: 許淑儀
Hsu, Shu-Yi
關鍵字: diglyceride;拋棄式生物感測器;disposable biosensor;lipoprotein lipase;glycerol kinase;glycerol 3-phosphate oxidase;脂蛋白分解酵素;甘油激酶甘油3-磷酸氧化酶
出版社: 材料科學與工程學系所
引用: [1] Y. Nishizuka, ”Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C”, Science, 256 (1992) 607-614. [2] Y. Nishizuka, “Protein kinase C and lipid signaling for sustained cellular responses”, FASEB J. (1995) 464-496. [3] Y. Hannun, “The sphingomyelin cycles and the second messenger function of ceramlde”, J. Biol. Chem. 269 (1994) 3125-3126. [4] R. Kolesnick, D.W. Golde, “The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling”, Cell, 771 (1994) 325-326. [5] A.V. Villar, F.M. Goni, A. Alonso, “Diacylglycerol effects on phosphatidylinositolspecific phospholipase C activity and vesicle fusion”, FEBS Lett. 494 (2001) 117-120. [6] G. Basañez, J.L. Nieva, F.M. Goñi, A. Alonso, “Origin of the lag period in the phospholipase C cleavage of phospholipids in membranes”, Biochemistry 35 (1996) 15183-15187. [7] J.G. Ebeling, G.R. Vandenbark, L. Kuhn, B. Ganong, R. Bell, Niedel, J. Proc. Natl. Acad. Sci., 82 (1985) 815-819 [8] R.J. Davis, B.R. Ganong, R.M. Bell, M.P. Czech, J. Biol. Chem. 260 (1985) 1562-1566 [9] T. Hajri, N.A. Abumrad, “Fatty acid transport across membranes: relevance to nutrition andmetabolic pathology”, Annu. Rev. Nutr. 22 (2002) 383-415. [10] O. Belgacem, G. Stübiger, G. Allmaier, A. Buchacher, K. Pock, “Isolation of esterified fatty acids bound to serum albumin purified from human plasma and characterised by MALDI mass spectrometry”, Biologicals 35 (2007) 43-49. [11] H. Ahyayauch, A.V. Villar, A. Alonso, F.M. Goñi, “Modulation of PI-specific phospholipase C by membrane curvature and molecular order”, Biochemistry 44 (2005) 11592-11600. [12] S. Carrasco, I. Merida, J. Biochem.Sci. 32 (2006) 1 [13] T. Murase, T. Mizuno, T. Omachi, et al. “Dietary diacylglycerol suppresses high fat and high sucrose diet-induced body fat accumulation in C57BL/6J mice”, J. Lipid Res. 42 (2001) 372-378. [14] H. Taguchi, H. Watanabe, K. Onizawa, et al. “Double-blind controlled study on the effects of diacylglycerol on postprandial serum and chylomicron triacylglycerol responses in healthy humans” J. Am. Coll. Nutr. 19 (2000) 789-796. [15] M.G. Soni, H. Kimura, G.A. Burdock, “Chronic study of diacylglycerol oil in rats”, J. Food Chem. Toxicol, 39 (2001) 317-329. [16] H. Takase, K. Shoji, T. Hase, et al. “Effect of diacylglycerol on postprandial lipid metabolism in non-diabetic subjects with and without insulin resistance”, J. Atherosclerosis, 180 (2005) 197-204. [17] N. Tada, K. Shoji, M. Takeshita, et al. “Effects of diacylglycerol ingestion on postprandial hyperlipidemia in diabetes”, J. Clinica Chimica Acta. 353 (2005) 87-94. [18] C.P. Chengelis, J.B. Kirkpatrick, R.H. Bruner, et al. “A 24-month dietary carcinogenicity study of DAG (diacylglycerol) in rats”, J. Food Chem. Toxicol 44(1) (2006) 98-121. [19] C.P. Chengelis, J.B. Kirkpatrick, G.B. Marit, et al. “A chronic dietary toxicity study of DAG in Beagle dogs”, J. Food Chem. Toxicol, 44(1) (2006) 81-97. [20] Y. Koichi, H. Walter, Y.S. Glinsmann, et al. “Safety aspects regarding the consumption of high-dose dietary diacylglycerol oil in men and women in a double-blind controlled trial in comparison with consumption of a triacylglycerol control oil”, J. Food Chem. Toxicol, 42 (2004) 1419-1429. [21] A.J. Wright, A.G. Marangoni, J. Food Sci. 68 (2003) 182. [22] D. Cheng, T.C. Nelson, J. Chen, et al. “Identification of acyl-coenzyme A: monoacylglycerol acyltransferase 3, an intestinal specific enzyme implicated in dietary fat absorption”, J. Biol. Chem. 278 (2003) 13611-13614. [23] M.H. Moh, T.S. Tang, G.H. Tan, J. Food Lipids 8 (2001) 179. [24] H. Mu, P. Kalo, X. Xu, C.E. Hoy, Eur, J. Lipid Sci. Technol. 102 (2000) 202. [25] K.A. Fliszar, W.P. Wuelfing, Zh. Li, R.A. Reed, J. Pharm. Biomed. Anal. 40 (2006) 896. [26] R.A. Tietz, R.W. Hartel, J .AOCS 77 (2000) 763. [27] A. Erlenkotter, M. Kottbus, G. Chemnitius, J. Electroanal. Chem. 481 (2000) 82. [28] J.T. Muller, P.M. Urban, W.F. Holderich, K.M. Colbow, J. Zhang, D.P. Wilkinson, J. Electrochem. Soc. 147 (2000) 4058-4064 [29] K. Photinon, S.H. Wang, C.C. Liu, J. Biosensors and Bioelectronics, 22 (2006) 501-505 [30] M.A. Sirvent, A. Merkoci, S. Alegret, “Configurations used in the design of screen-printed enzymatic biosensors”, Sens. Actuators B-Chem. 69 (2000) 153-163. [31] J. Shen, L. Dudik, C.C. Liu, J. Sensors & Actuators B 125 (2007) 106-113 [32] C.L. Jr, L.C. Ann, Acad. Sci. 102 (1962), 29-33. [33] J. Shah, E. Wilkins, Electroanal. 15 (2003) 157-167. [34] S. Zhang, G. Wright, Y. Yang, Biosens. Bioelectron. 15 (2000) 273-282. [35] Thévenot, D.R. Toth, K. Durst, R.A. Wilson, G.S. Pure, Appl. Chem. 71 (1999) 2333-2348. [36] A. F. Collings, F. Caruso, “Biosensors: recent advances”, Report on Progress in Physics, 60 (1997) 1397-1445. [37] X. Zhang, H. Ju, J. Wang. “Electrochemical sensors, biosensors, and their biomedical applications. (1st ed)”, (2008), Academic Press, ISBN: 0123737389 [38] J. Wang. “Analytical Electrochemistry (2ed.)”, (2000), Wiley, ISBN: 0471228230 [39] M.P. Kieratan, M.P. Coughlan, “Immobilization of cells and enzymes by gel entrapment, in Immobilized Cells and Enzyme”, IRL, Oxford, UK, (1985) 39-48. [40] R.A. Messing, “Adsorption and inorganic bridge formations”, Methods Enzymol. 44 (1976) 148-168. [41] H. C Tsai, R.A. Doong, H.C. Chiang, K.T. Chen, Analytica Chimica Acta, 481 (2003) 75-84. [42] Q.L. Wang, G.X. Lu, B. Yang, J. Biosensors & Bioelectronics, 19 (2004) 1269-1275. [43] A. Ramanavicius, A. Kausaite, A. Ramanaviciene, “Polypyrrole-coated glucose oxidase nanoparticles for biosensor design”, Sensors and Actuators, B: Chemical, B111-B112 (2005) 532-539. [44] Y.M. Yang, J.W. Wang, R.X. Tan, “Immobilization of glucose oxidase on chitosan-SiO2 gel”, Enzyme and Microbial Technology, 34(2) (2004) 126-131. [45] H. Zhu, R. Srivastava, J.Q. Brown, M.J. McShane, “Combined Physical and Chemical Immobilization of Glucose Oxidase in Alginate Microspheres Improves Stability of Encapsulation and Activity”, Bioconjugate Chem. 16 (2005) 1451-1458. [46] A.J. Bard, L.R. Faulkner, “Electrochemical Methods: Fundamentals and Applications (2ed.)”, (2000), Wiley. ISBN: 0471043729. [47] W. Heineman, F. Hawkridge, H. Blount, “Spectroelectrochemistry at Optically Transparent Electrodes” in A.J. Bard, Ed., Electroanalytical Chemistry, Vol.13, Marcel Dekker, New York, (1986). [48] Y. Shi, A. Slaterbeck, C. Seliskar, W.R. Heineman, Anal. Chem., 69 (1997) 3676. [49] J. Wang, X. Cai, C. Jonsson, M Balakrishan, Electroanalysis, 8 (1996) 20. [50] G.C. Gerhardt, R.M. Cassidy, A.S. Baranski, Anal. Chem., 70 (1998) 2167. [51] L. Fang, S.H. Wang, C.C. Liu, Sensors and Actuators B, 129 (2008) 818-825 [52] W.Y. Liao, C.C. Liu, C. Wang, Sensors and Actuators B, 134 (2008) 993-999 [53] L. Fang, W. Li, Y. Zhou, C.C. Liu, Sensors and Actuators B, 137 (2009) 235-238 [54] J.R. Steinhauer, R.W. Hardy, C.A. Robinson, T.M. Daly, Carolyn Chaffin, R.J. Konrad, J. Clinical Laboratory Analysis, 16 (2002) 52-55 [55] L.R. Montes, A. Alonso, F.M. Goñi, L.A. Bagatolli, “Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions”, J. Biophys. 93 (2007) 3548-3554. [56] H. Ahyayauch, G. Arana, J. Sot, A. Alonso, F.M. Goni, Biochimica et Biophysica Acta, 1788 (2009) 701-707. [57] W.Y. Liao, C.C. Liu and T.C. Chou, Analyst, 133 (2008) 1757 - 1763 [58] K. D. Pagana, T.J. Pagana in Mosby's Diagnostic and Laboratory Test Reference. Seventh Edition, Mosby, St. Louis, (2005) 937-938.
摘要: 
測定二酸甘油酯 (DG) 在血液中的濃度具有非常重要的臨床應用價值。本研究中利用實驗室已開發的單一使用、用完即丟含有Ir奈米粒子的生物感測器來做測試。二酸甘油酯首先被脂蛋白分解酵素(lipoprotein lipase)水解並產生甘油(glycerol),然後甘油再被甘油激酶(glycerol kinase)和甘油3-磷酸氧化酶(glycerol 3-phosphate oxidase)進行一系列的酶催化反應而產生過氧化氫 (H2O2)。在+0.5V相對銀/氯化銀參考電極的安培電流模式下,對過氧化氫進行一系列的檢測。酵素活性的最佳條件分別為脂蛋白分解酵素(22UmL-1)、甘油激酶 (1 UmL-1) 和甘油 3-磷酸氧化酶(6 UmL-1)。將脂蛋白分解酵素和甘油激酶加入測試液中並搖晃,以獲得均勻的混合物,再將測試液於37℃靜置1小時。利用2%戊二醛(glutaraldehyde)溶液將甘油3-磷酸酶以共價鍵方式固定在含Ir的碳工作電極上。由電化學量測可知,拋棄式生物感測器檢測到二酸甘油酯的電流反應良好,在緩衝溶液和牛血清中,二酸甘油酯濃度和電流之間具有良好的線性關係。另外,添加0.28%的Triton X-100界面活性劑可以提高效能。

Determination of diglyceride (DG) level in blood is important in clinical applications. A single use, disposable iridium-nano particle contained biosensor was developed in this study. DG is first hydrolyzed by lipase, and the released glycerol is then carried out the enzymatic reaction catalyzed by glycerol kinase and glycerol 3-phosphate oxidase in sequence producing hydrogen peroxide. The hydrogen peroxide is monitored at an applied potential of +0.5 V versus the Ag/AgCl reference electrode operating in an amperometric mode. The optimal condition of enzyme activity is lipase (22U mL-1), glycerol kinase (1U mL-1) and glycerol 3-phosphate oxidase (6U mL-1), respectively. Lipase, GK were added in test medium and shaken in order to obtain a homogeneous mixture, and then allowed to incubate at 37℃ for 1 hr. Glycerol 3-phosphate oxidase is covalently immobilized on the iridium-contained carbon working electrode using immobilization of 2% glutaraldehyde solution. Electrochemical measurement shows that the disposable biosensor detects DG concentration amperometrically which respond well and has a good linear relationship between response current and DG concentration in both phosphate buffer solution and bovine serum. The addition of surfactant 0.28% (v/v) Triton X-100 can enhance the performance of this system.
URI: http://hdl.handle.net/11455/10860
Appears in Collections:材料科學與工程學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.