Please use this identifier to cite or link to this item:
標題: 以水熱-化學電池法於氮化鈦膜上製備鈦酸鋇膜及其成長動力學分析
Synthesis and growth kinetics of barium titanate films by a hydrothermal-galvanic technique on TiN-coated substrate
作者: 蔡迪佑
Tsai, Di-You
關鍵字: hydrothermal;水熱法;hydrothermal-galvanic couple;barium titanate;kinetics;水熱-化學電池法;鈦酸鋇;動力學
出版社: 材料科學與工程學系所
引用: [1] M. W. Barsoum, Fundamental of Ceramics, Institute of Physics Publishing London (2003). [2] P. Li, T-M. Lu and H. Bakhru, “High charge storage in amorphous BaTiO3 thin films”, Appl. phys. Lett., 58 (1991), 2639. [3] G. H. Heartling, “Ferroelectric thin films for electronic applications“, J. Vac. Sci. Technol. A, 9 (1991), 414. [4] H. Takahashi, Y. Numamoto, J. TANI1, S. Tsuekawa, “Piezoelectric properties of BaTiO3 ceramics with high performance fabricated by microwave Sintering”, Jpn. J. Appl. Phys., 45 (2006), 7405. [5] J. Nowotny, M. Rekas, “Positive temperature coefficient of resistivity for BaTiO3-based materials”, Ceram. Int., 17 (1991), 227. [6] J. Wang1, H-Wan, Q. Lin, “Properties of a nanocrystalline barium titanate on silicon humidity sensor”, Meas. Sci. Technol., 14 (2003), 172. [7] H. Kishi, Y. Mizuno, H. Chazono, “Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives”, Jpn. J. Appl. Phys., 42 (2003), 1. [8] D. Su Lee, H. J. Woo, D. Y. Park, J. Ha, C. S. Hwang, and E. Yoon, “Effects of the microstructure of platinum electrode on the oxidation behavior of TiN diffusion barrier layer”, Jpn. J. Appl. Phys., 42 (2003), 630. [9] N. W. Cheun, H. V. Seefeld, M. A. Nicolet, F. Ho, P. Lles, “Thermal stability of titanium nitride for shallow junction solar cell contacts”, J. Appl. Phys., 52 (1981), 4297. [10] M. Yoshimua, K. Byrappa, “Hydothemal processing of materials:past, present and future”, J. Mater. Sci., 43 (2008), 2085. [11]汪建民, 陶瓷技術手冊(下),中華民國粉末冶金協會,第二十三章:氮化物(黃肇瑞),第777~804頁,民國八十三年。 [12] T. Pencheva and M. Nenkov, “The Preperties of Barium titanate RF Sputtered in Argon”, Vacuum, 48 (1997), 43. [13] T. Chiba, K.-I. Itoh and O. Mastumoto, “Deposition of BaTiO3 thin films by plasma MOCVD”, Thin Soild Films, 300 (1997), 6. [14] Y. Yano, K. Iijima, Y. Daitoh, T. Terashima, Y. Bando, Y. Watanabe, H. Kasatani, and H. Terauchi, “Epitaxial growth and dielectric properties of BaTiO3 film on Pt electrodes by reactive evaporation”, J. Appl. Phys., 76 (1994), 7833. [15] M.-B. Lee, M. Kawasaki, M. Yoshimoto, and H. Koinuma, “Heteroepitaxial growth of BaTiO3 films on Si by pulsed laser deposition”, Appl. Phys. Lett., 66 (1995), 1331. [16] M. N. Kamalasanan, N. D. Kumar, S. Chandra. “Structural and microstructural evolution of barium titanate thin films deposited by the sol gel process”, J. Appl. Phys., 76 (1994), 4603. [17] E. B. Slamovich, I. A. Aksay, “Structure evolution in hydrothermal processed (<100℃) BaTiO3 films”, J. Am. Ceram. Sci., 79 (1996), 239. [18] M. Yoshimura, S.-E. Yoo, M. Hayashi, and N.Ishizawa, “Preparation of BaTiO3 Thin Film by Hydrothermal Electrochemical Method”, Jpn. J. Appl. Phys., 28 (1989), L2007. [19] W. Sun, W. Liu, J. Li, “Effect of chloride ion on hydrothermal synthesis of tetragonal BaTiO3 by microwave heating and convitional heating”, Powder Technol., 166 (2006), 55. [20] M. Yoshimura, W. Suchanek, “In situ fabration of morphology-controlled advanced ceramic material by Soft Solution Process”, Solid State Ionic, 98 (1997), 197. [21] D. E. Rase, R. Roy, “Phase equilibria in the system BaO–TiO2”, J. Am. Ceram. Soc., 38 (1955), 102. [22] Y-C. Chieh, C-C Yu, and F-H Lu, &quot;Epitaxial growth of BaTiO3 films on TiN/Si substrates by a hydrothermal-galvanic couple method&quot;, Appl. Phys. Lett., 90 (2007), 032904. [23] H.-P. Teng, Y.-C. Chieh, and F.-H. Lu, &quot;Preparation of BaZrO3 films by physical vapor deposition and a novel hydrothermal duplex technique&quot;, Thin Solid Films, 516 (2007), 364. [24] P.-H. Chan, F.-H. Lu, “Low-temperature hydrothermal-galvanic couple synthesis of BaTiO3 thin films on Ti-coated silicon substrate”, Thin Solid Films, 517 (2009), 4782. [25] P.-H. Chan, F.-H. Lu, “Low temperature hydrothermal synthesis and growth kinetics of BaTiO3 films on TiN/Si, Ti/Si, and bulk Ti”, J. Electrochem. Soc., 157 (2010), G130. [26] B. Jaffe, W. R. Cook, H. Jaffe, Piezoelectric ceramics, William R. CooK, Jr. and Hans Jaffe Gould Inc., Cleveland, (1971). [27] M. Hayshi, N. Ishizawa, S.-E. Yoo, and M. Yoshimura,“Preparation of Barium Titanate thin film on Titanium-deposited glass substrate by hydrothermal-electrochemical method,” J. Ceram. Soc. Jpn., 98 (1990), 930. [28] R. Bacsa, P. Ravindranathan, and J.P. Dougherty,“Electrochemical, hydrothermal, and electrochemical-hydrothermal synthesis of barium titanate thin films on titanium substrates,” J. Mater. Res., 7 (1992), 423. [29] P. Bendale, S. Venigalla, J. R. Ambrose, E. D. Verink, J. H. Adair, “Preparation of barium titanate at 55℃ by an electrochemical method”, J. Am. Ceram. Soc., 76 (1993), 2619. [30] S. Venigalla, P. Bendale, J. H. Adair, “Low temperature electrochemical synthesis and dielectric characterization of barium titanate films using nonalkali electrolytes”, J. Electrochem. Soc., 142 (1995), 2101. [31] T. Vargas, H. Diaz, C. I. Silva, V. M. Fuenzalida, “Hydrothermal-electrochemical formation characterization of the early stage of growth”, J. Am. Ceram., 80 (1997), 213 [32] K. Kajiyoshi, Y. Sakabe, and M. Yoshimura, “Electrical properties of BaTiO3 Thin Film Grown by the Hydrothermal-Electrochemical Methode”, Jpn. J. Appl. Phys., 36 (1997), 1209. [33] W. Suchanek, T. Watanabe, and M. Yoshimura, “Preparation of BaTiO3 thin films by the hydrothermal-electrochemical method in the flowing solution,” Solid State Ion., 109 (1998), 65. [34] Z Wu, M Yoshimura, “Investigations on procedures of the fabrication of barium titanate ceramic films under hydrothermal-electrochemical conditions,” Solid State Ion., 122 (1999), 161. [35] I. S. Escobar, C. I . Silva, T. Vargas, V. M. Fuenzalida, “Nucleation and inhibition control during the hydrothermal-electrochemical growth of barium titanate films”, J. Am. Cream. Soc., 83 (2000), 2673. [36]余錦智,“以低溫水熱法及化學電池作用於氮化鈦膜上製備鈦酸鋇膜之研究”,國立中興大學材料科學與工程學系碩士論文,(2005)。 [37]趙玲夙,“以低溫水熱-化學電池法於鍍鈦膜矽基材上製備具有生物活性之奈米NaHTi3O7薄膜研究”,國立中興大學材料科學與工程學系碩士論文,(2009)。 [38] J. D. Hancock, J. H. Sharp, “Method of composition solid-state kinetic data and its application to the decomposition of kaolinite ,brucite and BaCO3”, J. Am. Ceram. Soc., 55 (1971), 74. [39] W. A. Johson and R. F. Mehl, “Reaction kinetics in processes of nucleation and growth,” Trans. Am. Inst. Min., Metall. Pet. Eng., 135 (1939), 416. [40] M. Avrami, “Kinetics of phase change. I general theory”J. Chem. Phys., 7 (1939), 1103. [41] M. Avrami, “Kinetics of phase change. II transformation time relations for random distribution of nuclei,” J. Chem. Phys., 8 (1940), 212. [42] M. Avrami, “Kinetics of phase change. III. granulation, phase change, and microstructure,” J. Chem. Phys., 9 (1941), 177. [43] B. V. Erofe’ev, “Generalized equation of chemical kinetics and its application in reactions involving solids,” C. R. (Dokl.) Acad. Sci. URSS, 52 (1946), 511. [44] T. R. N. Kutty, P. Padmini, “Mechanism of formation through gel-to crystallite conversions”, Mater. Chem. Phys., 39 (1995), 200. [45] J. O. Eckert , C. H-Houston, B. L. Gerstwn, M. M. Lencka and R. E. Riman, “Kinetics and mechanisms of hydrothermal synthesis of barium titanate”, J. Am. Ceram. Soc., 79 (1996), 2929. [46] I. MacLaren, C.B. Ponton, “A TEM and HRTEM study of particle formation during barium titanate synthesis in aqueous solution”, J. Eur. Ceram. Soc., 20 (2000), 1267. [47] R. I. Walton, F. Millange, R. I. Smith, T. C. Thomas, D. O’Hare, “Real time obeservation of the hydrothermal crystallization of barium titanate using in-situ neutron powder diffraction”, J. Am. Ceram. Soc., 123 (2001), 12547. [48] J. Moon, E. Suvaci, A. Morrone, S. A. Cpstantino, J. H. Adair, “Formation mechanisms and morphological changes during the Hydrothermal”, J. Eur. Ceram. Soc., 23 (2003), 2153. [49] A. Testino, V. Buscaglia, M. T. Buscaglia, M. Vivani, P. Nanni, “Kinetic modeling of Aqueous and hydrothermal synthesis of barium titanate”, Chem. Mater., 17 (2005), 5346. [50] W. Sun, Y. Pang, J. Li, W. Ao, “Particle coarsening II:growth kinetics of hydrothermal BaTiO3”, Chem. Mater., 19 (2007), 1772. [51]田福助,電化學-基本原理與應用,五洲出版社,第三章:可逆性電極之電位,第53-55頁,民國八十三年。 [52]黃宏勝,林麗娟,FE-SEM/CL/EBSD分析技術簡介工業雜誌,201期 (2003),99。 [53] A. J. Schwartz et al., Electron backscattered in material science, Kluwer Academic/Plenum Publishers, (2000). [54]陳耀明,“TiN鍍膜微結構與性質之研究”,國立清華大學工程科學與系統學系碩士論文,(2002)。 [55]楊浚揮,“以物理氣相沈積法通入空氣/氬氣製備TiN薄膜”,國立中興大學材料系碩士論文,(2006)。 [56] J. Pelleg, L. Z. Zevin Evin and S. Lungo, “Reactive-sputter-deposited TiN films on glass substrate”, Thin Soild Films, 197 (1991) 117. [57] C-R. Cho, E. Shi, M-S. Jang, S-Y Jeong, S-C. Kim, “Structural and electrical properties of BaTiO3 thin films on Si (001) substrate by hydrothermal synthesis”, Jpn. J. Appl. Phys., 33 (1994), 4984. [58] W. Xu, L. Zheng, H. Xin, C. Lin, “Hydrothermal BaTiO3 thin films on Ti-covered silicon:characterization and growth mechanism”, Electrochem. Soc., 143 (1996), 1133. [59] J. G. Lisoni, F. J. Piera, M Sanchez, C. F. Soto, V. M. Fuenzalida, “Water incorporation in BaTiO3 films grown under hydrothermal conditions”, Appl. Surf. Sci., 134 (1998), 225. [60] L. Huang, Z. chen, J. D. Wilson, S. Banerjee, R. D. Robinson, I. P. Herman, R. Laibowitz, S. O’Brien, “Barium titanate nanocrystals and nanocrystal thin films:synthesis, ferroelectricity, and dielectric properties”, J. Appl. Phys., 100 (2006), 034316-1. [61] W-P. Xu, L. Zheng, C. Lin, and M. Okuyama, “(111)-Oriented BaTiO3 thin films hydrothermally formed on TiO2/Si substrate”, Integr. ferroelectr., 12 (1996), 233. [62] J. Zhao, X. Wang, L. Li, X. Wang, Y. Li, “Synthesis, characterization and electrical properties of barium titanate films fabricated by hydrothermal method”, Key Eng. Mater., 368-372 (2008), 47. [63] M. Oledzka, N. E. Brese, and R. E. Riman, “Hydrothermal synthesis of BaTiO3 on a titanium-loaded polymer support”, Chem. Mater., 11 (1999) 1931. [64] C. Chen, Y. Wei, X. Jiao, D. Chen, “Hydrothermal synthesis of BaTiO3:crystal phase and the Ba2+ leaching behavior in aques medium”, Mater. Chem. Phys., 110 (2008), 186. [65] J. Malek, “The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses”, Thermochimica Acta, 267 (1995) 61. [66] K. Kajiyoshi, N. Ishizawa, M. Yoshimura, “Heteroepitaxial gowth of BaTiO3 thin films on SrTiO3 substrate unde hydrothermal conditions”, Jpn. J. Appl. Phys., 30 (1991), L120.
本研究是以低溫水熱-化學電池法,在具優選方向之TiN/Si上製備高方向性之鈦酸鋇薄膜。以0.5 M醋酸鋇 (Ba(CH3COO3)2) 及氫氧化鈉 (NaOH) 為反應溶液,藉由改變不同反應溫度與時間之條件,探討反應過程中電流以及鈦酸鋇生成量隨時間的變化,進而了解鈦酸鋇薄膜之成長動力學關係及反應過程中化學電池作用實際工作的情形。藉由反應期間電壓、電流之監測,可知TiN (陽極) 與白金 (陰極) 間存在一電位差,且反應過程中亦有明顯的電流變化,證實此系統確實具有化學電池機制。反應過程中電流會先升高至最大值再逐漸下降至背景值,且隨溫度上升最大電流亦隨之上升,顯示溫度越高化學電池作用越顯著。
X光繞射分析 (XRD) 結果顯示,以水熱法 (HT) 及水熱-化學電池法(HT-GC) 所製備出之立方相鈦酸鋇膜,均具有與TiN底材相同之 (111) 高優選結晶方向。由掃描式電子顯微鏡 (FE-SEM) 結果得知,經水熱-化學電池法在溫度55℃反應2小時或於80℃時反應30分鐘後,鈦酸鋇晶粒已明顯覆蓋滿TiN/Si表面,而水熱法則須於60℃反應2小時或80度℃反應1小時以上,鈦酸鋇晶粒才會漸漸覆蓋滿TiN/Si表面,故可證實以水熱-化學電池法製備鈦酸鋇膜之速率確實較水熱法來的快速。橫截面微結構變化結果顯示,以水熱法及水熱-化學電池法製備之鈦酸鋇晶粒在成核成長至一特定的厚度,即不繼續增厚,會隨反應時間增長薄膜有溶解-再結晶的現象,使膜厚反而下降,且BaTiO3與TiN界面處會變得較不平整,膜厚量測上誤差也相對較大。因此本研究計算鈦酸鋇生成量時,是取反應區域上五個代表性的位置,並將鈦酸鋇以覆蓋率方式量化,探討覆蓋比率隨溫度及時間的變化關係。
利用Johnson-Mehl-Avrami-Erofe’ev equation進行非線性迴歸分析。結果顯示水熱-化學電池法其ln k與1/T呈現非線性關係,可能是化學電池作用下與溫度效應相互影響的結果。而將水熱-化學電池法覆蓋率計算結果與對照組水熱法比較,在高溫時化學電池輔助現象較低溫時顯著,且於化學電池實際作用期間,外加化學電池效應輔助下約可增加20~65%的鈦酸鋇增加百分比;但由觀察覆蓋率數據與電流計算結果,則可發現隨溫度上升雖可增加化學電池輔助的效益,相對於整個水熱-化學電池製程中所佔的相對比例卻是逐漸減少,會從50℃時的40%下降至80℃時的20%。藉由本研究的結果將可對此新穎製程於應用上有更大的幫助。

This research is to synthesize epitaxial-like BaTiO3 films on high preferred orientation TiN/Si substrate by the hydrothermal-galvanic couple method at low temperatures (<100℃). A mixing solution of 0.5 M barium acetate (Ba(CH3COO)2) and 2 M sodium hydroxide (NaOH) was used as electrolyte. By changing the reaction of temperature and time to investigate the influence of current on the coverage of BaTiO3 with time, as to understand the growth kinetics of barium titanate and the role of the galvanic couple in this process. By measuring voltage and current during the experiment, a potential drop between TiN (anode) and platinum (cathode) was observed; apparance current changes were determinded during the reaction, which confirms the existence of galvanic-couple in this system. During the reaction current was increased to a maximum value, and then decreased to the background gradually, With the temperature increasing, the maxium of current would be raised. Indicating the galvanic couple effect at high temperature would be more significant.
XRD results reveal that both low temperature hydrothermal and hydrothermal-galvanic couple techniques could be used to successfully prepare cubic BaTiO3 films. And all of these films have the same orientation as high preferred orientation (111) TiN/Si substrate. Then the surface morphology and thickness of obtained BaTiO3 films was investigated by field-emission scanning electron microscopy. After hydrothermal-galvanic couple treatment of TiN/Si substrate at 55℃ for 2 hours or at 80℃ for 30 minutes, the BaTiO3 particles could cover over TiN/Si substrate surface. But in hydrothermal treatment should be at 60 ℃ for 2 hours or 80 ℃ more than 1 hour to cover BaTiO3 particles over TiN/Si substrate.This phenomenon comfirmed that the growth rate of BaTiO3 on TiN/Si substrate by the hydrothermal-galvanic couple technique is faster than hydrothermal technique. In cross-section thickness shows that BaTiO3 would nucleation and growth to a certain thickness, and stop to thicken. On the contrary the films would dissolve-recrystallization to decrease the films thickness, and BaTiO3/TiN interface became uneven that would make thickness hard to measure. Therefore, in this research we choose five representative positions on reaction region to calculate the BaTiO3 formation, and convert it to BaTiO3 coverage ratio. To study how BaTiO3 coverage ratio would change with temperature and time.
By using the Johnson-Mehl-Avrami-Erofe'ev equation to calculate experimental data of BaTiO3 coverage, shows the nonlinear relationship of the lnk and 1/T in hydrothermal-galvanic couple method. It may due to the galvanic couple and temperature effect. When compared the hydrothermal-galvanic couple method with hydrothermal coverage results, the galvanic couple assisted effect is more dominant than low temperature. The galvanic couple would gain 20~65% in percentage increase during the galvanic couple worked period. However, the calculated results from coverage and current reveal that the galvanic couple assisted effect would gain with increasing temperature. But relative ratio of assisted effect would decreased from 40% to 20% with temperature increasing from 50 to 80. The results of this research could have more helps in this novel technique's application.
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.