Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10887
標題: 濺鍍法中以空氣做為反應性氣體製備氮化鈦、氮氧化鈦與氮摻雜二氧化鈦薄膜及其特性研究
Deposition and Characteristics of TiN, TiNxOy, and N-doped TiO2 Thin Films by Sputtering Using Air as a Reactive Gas
作者: 詹慕萱
Chan, Mu-Hsuan
關鍵字: sputtering;濺鍍法;air;TiN;TiNxOy;nitrogen-doped TiO2;空氣;氮化鈦;氮氧化鈦;氮摻雜二氧化鈦
出版社: 材料科學與工程學系所
引用: T. Bell, and H. Dong, Advances in Surface Treatment: Research & Applications (ASTRA), T. S. Sudarshan, G. Sundararajan, G. E. Totten, and S. V .Joshi, ed. Proc. Intl. Conf., (2004). P. Ettmayer, and W. Lengauer, Nitrides: Transition Metal Solid State Chemistry, in Encyclopedia of Inorganic Chemistry, R.B. King ed. John Weily & Sons, New York, (1994) p.2498 F. Cardarelli, Materials Handbook: A Concise Desktop Reference, Spring-Verlag, Singapore, (2001) p.352, 353. H. Holleck, “Material selection for hard coatings,” J. Vac. Sci. Technol. A 4 (1986) 2661. C. Karl, W. Lengauer, D. Rafaja, and P. Ettmayer, “Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides,” J. Alloys Compd. 265 (1998) 215. E. J. Markel, and M. E. Leaphart II, Nitrides, in Encyclopedia of Chemical Technology, edited by M.H. Grant, 4th ed., John Wiley and Sons, New York, 1996, Vol. 19, p.112. X. Yang, C. Li, B. Yang, W. Wang, and Y. Qian, “Optical properties of titanium oxynitride nanocrystals synthesized via a thermal liquid-solid metathesis reaction,” Chem. Phys. Lett. 383 (2004) 502. F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, and E. Alves, “Structural, optical and mechanical properties of coloured TiNxOy thin films,” Thin Solid Films 447-448 (2004) 449. S. D. Mo, and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,” Phys. Rev. 51 (1995) 13023. H. O. Pierson. Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications, Noyes Publications, New Jersey (1996) p.193. M. Matsuoka, S. Isotani, J. C. R. Mittani, and J. F. D. Chubaci, “Arrival rate and gas pressure on the chemical bonding and composition in titanium nitride films prepared on si(100) substrates by ion beam and vapor deposition,” J. Vac. Sci. Technol. A 23 (2005) 137. S. Y. Zhang, and W. G. Zhu, “TiN coating of tool steels: a review,” J. Mater. Proce. Technol. 39 (1993) 165. R. Fix, R. G. Gordon, and D. M. Hoffman, “Chemical Vapor Deposition of Titanium, Zirconium, and Hafnium Nitride Thin Films,” Chem. Mater. 3 (1991) 1138. Z. J. Peng, H. Z. Miao, L. H. Qi, S. Yang, and C. Z. Liu, “Hard and wear-resistant titanium nitride coatings for cemented carbide cutting tools by pulsed high energy density plasma,”Acta Mater. 51 (2003) 3085. K. Wang, and V. D. Krstic, “Reaction sintering of TiN-TiB2 ceramics,” Acta Mater. 51 (2003) 1809. S. Kawano, J. Takahashi, and S. Shimada, “Highly electroconductive TiN/Si3N4 composite ceramics fabricated by spark plasma sintering of Si3N4 particles with a nano-sized TiN coating,” J. Mater. Chem. 12 (2002) 361. P. K. Barhai, N. Kumari, I. Banerjee, S. K. Pabi, and S. K. Mahapatra, “Study of the effect of plasma current density on the formation of titanium nitride and titanium oxynitride thin films prepared by reactive DC magnetron sputtering,” Vacuum 84 (2010) 896. J.M. Chappe, N. Martin, and J. Lintymer, “Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process,” Appl. Surf. Sci. 253 (2007) 5312. C. H. Shin, G. Bugli, and G. D. Mariadassou, “Preparation and characterization of titanium oxynitrides with high specific surface areas,” J. Solid State Chem. 95 (1991) 145. N. D. Cuong, D.-J. Kim, B.-D. Kang, and S.-G. Yoon, “Structural and Electrical Properties of TiNxOy Thin-Film Resistors for 30 dB Applications of π-type Attenuator,” J. Electrochem. Soci. 153 (2006) G856. C. Nunes, V. Teixeira, M. L. Prates, N. P. Barradas, and A. D. Sequeira, “Graded selective coatings based on chromium and titanium oxynitride,” Thin Solid Films 442 (2003) 173. R. J. Koerner, L. A. Butterworth, I. V. Mayer, R. Dasbach, and H. J. Busscher, “Bacterial adhesion to titanium-oxy-nitride (TiNOX) coatings with different resistivities: a novel approach for the development of biomaterials,” Biomaterials, 23 (2002) 2835. F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, and J. P. Riviére, “Preparation of magnetron sputtered TiNxOy thin films,” Surf. Coat. Technol. 174-175 (2003) 197. T. Oyama, H. Ohsaki, Y. Tachibana, Y. Hayashi, Y. Ono, and N. Horie, “A new layer system of anti-reflective coating for cathode ray tubes,” Thin Solid Films 351 (1999) 235. N. D. Cuong, D. J. Kim, B. D. Kang, C. S. Kim, and S. G. Yoon, “Characterizations of high resistivity TiNxOy thin films for applications in thin film resistors,” Microelectron. Reliab. 47 (2007) 752. A. Fujishima, and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature 238 (1972) 37. M. Anpo, T. Shima, S. Kodama, and Y. Kubokawa, “photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2: size quantization effects and reaction intermediates,” J. Phys. Chem. 91 (1985) 4305. A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis: Fundamentals and Applications, 1st ed. BKC, Tokyo, 1999. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science 293 (2001) 269. P. J. Kelly, and R. D. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum 56 (2000) 159. I. Safi, “Recent aspects concerning DC reactive magnetron sputtering of thin films: a review,” Surf. Coat. Technol. 127 (2000) 203. J. G. Han, “Recent progress in thin film processing by magnetron sputtering with plasma diagnostics,” J. Phys. D: Appl. Phys. 42 (2009) 043001. W. D. Sproul, D. J. Christie, and D. C. Carter, “Review: Control of reactive sputtering processes,” Thin Solid Films 491 (2005) 1. T. Larsson, H. O. Blom, C. Nender, and S. Berg, “A physical model for eliminating instabilities in reactive sputtering,” J. Vac. Sci. Technol. A 6 (1988) 1832. G. Este, and W.D. Westwood, “A quasi‐direct‐current sputtering technique for the deposition of dielectrics at enhanced rates,” J. Vac. Sci. Technol. A 6 (1988) 1845. S. M. Rossnagel, Sputter Deposition. In: Sproul WD, Legg KO, editors. Opportunities for Innovation: Advanced Surface Engineering, Switzerland: Technomic Publishing Co., 1995. J. E. Sundgren, “Review: Structure and Properties of TiN Coatings,” Thin Solid Films 128 (1985) 21. J. M. Cairney, R. Tsukano, M. J. Hoffman, and M. Yang, “Degradation of TiN coatings under cyclic loading,” Acta Mater. 52 (2004) 3229. P. Patsalas, C. Gravalidis, and S. Logothetidis, “Surface kinetics and subplantation phenomena affecting the texture, morphology, stress, and growth evolution of titanium nitride films,” J. Appl. Phys. 96 (2004) 6234. M. A. Wall, D. G. Cahill, I. Petrov, D. Gall, and J. E. Greene, “Nucleation kinetics during homoepitaxial growth of TiN(001) by reactive magnetron sputtering,” Phys. Rev. B 70 (2004) 035413. M. H. Chan, and F.-H. Lu, “Preparation of titanium oxynitride thin films by reactive sputtering using air/Ar mixtures,” Surf. Coat. Technol. 203 (2008) 614. http://www.umms.sav.sk/index.php?ID=415&pg=8 W. F. Libby, “Plasma chemistry,” J. Vac. Sci. Technol. 16 (1979) 414 G. M. Burnett, and A. M. North (Eds.), Transfer and Storage of Energy by Molecules, Wiley-Interscience, New York (1969). P. M. Martin, Handbook of Deposition Technologies for Films and Coatings, Third Edition: Science, Applications and Technology, 2010, pp 68. A. G. Spencer, R. P. Howson, and R. W. Lewin, “Pressure stability in reactive magnetron sputtering,” Thin Solid Films 158 (1988) 141. D. M. Mattox, Deposition Technologies for Films and Coatings, Noyes Publications, Park Ridge, New Jersey, U.S.A., 1982. J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol. 11 (1974) 666. H. A. Wriedt, and J. L. Murray, “The N-Ti (Nitrogen-Titanium) system”, Bull. Alloy Phase Diagrams, 8 (1987) 378. J. L. Murray, Phase diagrams in binary titanium alloys, ASM International, Materials Park, OH, (1990) p.176. K. Wasa, and S. Hayakawa, “Reactively sputtered titanium resistors, capacitors and rectifiers for microcircuits,” Microelectron. Reliab. 6 (1967) 213. W. Synielnikowa, T. Niemyski, J. Panczyk, and E. Kierzek-Pecold, “Vapour-phase crystallization and some physical properties of titanium nitride,” J. Less-Common Met. 23 (1971) 1. A. Kato, and N. Tamari, “Crystal growth of titanium nitride by chemical vapor deposition,” J. Cryst. Growth 29 (1975) 55. M. J. Vasile, A. B. Emerson, and F. A. Baiocchi, “The characterization of titanium nitride by x-ray photoelectron spectroscopy and Rutherford backscattering,” J. Vac. Sci. Technol. A 8 (1990) 99. U. C. Oh, and J. H. Je, “Effects of strain energy on the preferred orientation of TiN thin films,” J. Appl. Phys. 74 (1993) 1692. W. D. Sproul, M. E. Graham, M.-S. Wong, and P. J. Rudnik, “Reactive unbalanced magnetron sputtering of the nitrides of Ti, Zr, Hf, Cr, Mo, Ti-Al, Ti-Zr and Ti-Al-V,” Surf. Coat. Technol. 61 (1993) 139. J. S. Colligon, H. Kheyrandish, L. N. Lesnevsky, A. Naumkin, A. Rogozin, I. I. Shkarban, L. Vasilyev, and V. E. Yurasova, “Composition and chemical state of titanium nitride films obtained by different methods,” Surf. Coat. Technol. 70 (1994) 9. L.-J. Meng, and M. P. Dos Santos, “Characterization of titanium nitride films prepared by d.c. reactive magnetron sputtering at different nitrogen pressures,” Surf. Coat. Technol. 90 (1997) 64. M. I. Jones, I. R. McColl, and D. M. Grant, “Effect of substrate preparation and deposition conditions on the preferred orientation of TiN coatings deposited by RF reactive sputtering,” Surf. Coat. Technol. 132 (2000) 143. N. Martin, R. Sanjines, J. Takadoum, and F. Levy, “Enhanced sputtering of titanium oxide, nitride and oxynitride thin films by the reactive gas pulsing technique,” Surf. Coat. Technol. 142-144 (2001) 615. W.-J. Chou, G.-P. Yu, and J.-H. Huang, “Deposition of TiN thin films on Si (100) by HCD ion plating,” Surf. Coat. Technol. 140 (2001) 206. R. Banerjee, R. Chandra, and P. Ayyub, “Influence of the sputtering gas on the preferred orientation of nanocrystalline titanium nitride thin films,” Thin Solid Films 405 (2002) 64. Y.-K. Lee, J.-Y. Kim, Y.-K. Lee, M.-S. Lee, D.-K. Kim, D.-Y. Jin, T.-H. Nam, H.-J. Ahn, and D.-K. Park, “Surface chemistry of non-stoichiometric TiNx films grown on (100) Si substrate by DC reactive magnetron sputtering,” J. Crystal Growth 234 (2002) 498. S. Guruvenket, and G. M. Rao, “Effect of ion bombardment and substrate orientation on structure and properties of titanium nitride films deposited by unbalanced magnetron sputtering,” J. Vac. Sci. Technol. A 20 (2002) 678. J.-H. Huang, K.-W. Lau, and G.-P. Yu, “Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering,” Surf. Coat. Technol., 191 (2005) 17. H. Söderberg, M. Odén, J. M. Molina-Aldareguia, and L.Hultman, “Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering,” J. Appl. Phys. 97 (2005) 114327. Y. M. Kima, Y. M. Chung, M. J. Jung, J. Vlček, J. Musil, and J. G. Han, “Optical emission spectra and ion energy distribution functions in TiN deposition process by reactive pulsed magnetron sputtering,” Surf. Coat. Technol. 200 (2005) 835. R. Gunda, S. K. Biswas, S. Bhowmick, and V. Jayaram, “Mechanical properties of rough tin coating deposited on steel by cathodic arc evaporation technique,” J. Am. Ceram. Soc. 88 (2005) 1831. F. Vaz, J. Ferreira, E. Ribeiro, L. Rebouta, S. L. Méndez, J. A. Mendes, E. Alves, Ph. Goudeau, J. P. Rivière, F. Ribeiro, I. Moutinho, K. Pischow and J. de Rijk, “Influence of nitrogen content on the structural, mechanical and electrical properties of TiN thin films”, Surf. Coat. Technol. 191 (2005) 317. M. Matsuoka, S. Isotani, J. C. R. Mittani, and J. F. D. Chubaci, “Effects of arrival rate and gas pressure on the chemical bonding and composition in titanium nitride films prepared on Si(100) substrates by ion beam and vapor deposition,” J. Vac. Sci. Technol. A 23(1) (2005) 137. C.-H. Ma, J.-H. Huang, and H. Chen, “Nanohardness of nanocrystalline TiN thin films,” Surf. Coat. Technol. 200 (2006) 3868. C. Ziebert, and S. Ulrich, “Hard multilayer coatings containing TiN and/or ZrN: A review and recent progress in their nanoscale,” J. Vac. Sci. Technol. A 24 (2006) 554. A. Lousa, J. Esteve, J. P. Mejia, and A. Devia, “Influence of deposition pressure on the structural mechanical and decorative properties of TiN thin films deposited by cathodic arc evaporation,” Vacuum 81 (2007) 1507. Y. L. Jeyachandran, S. K. Narayandass, D. Mangalaraj, S. Areva, and J. A. Mielczarski, “Properties of titanium nitride films prepared by direct current magnetron sputtering,” Mater. Sci. Eng. A, 445-446 (2007) 223. S. Wrehde, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, and R. Hippler, “Optical and chemical characterization of thin TiNx films deposited by DC-magnetron sputtering,” Vacuum 82 (2008) 1115. T.-S. Yeh, J.-M. Wu, and L.-J. Hu, “The properties of TiN thin films deposited by pulsed direct current magnetron sputtering,” Thin Solid Films 516 (2008) 7294. V. Chawla, R. Jayaganthan, and R. Chandra, “Structural characterizations of magnetron sputtered nanocrystalline TiN thin films,” Mater. Charact. 59 (2008) 1015. S. Carpenter, and P. J. Kelly, “Sub-microstructure and surface topography of reactive unbalanced magnetron sputtered titanium and titanium compound thin films,” Surf. Coat. Technol. 204 (2009) 923. T. Nakano, K. Hoshi, and S. Baba, “Effect of background gas environment on oxygen incorporation in TiN films deposited using UHV reactive magnetron sputtering,” Vacuum 83 (2009) 467. L. T. Cunha, P. Pedrosa, C. J. Tavares, E. Alves, F. Vaz, and C. Fonseca, “The role of composition, morphology and crystalline structure in the electrochemical behaviour of TiNx thin films for dry electrode sensor materials,” Electrochim. Acta 55 (2009) 59. M. Popović, M. Novaković, and N. Bibić, “Structural characterization of TiN coatings on Si substrates irradiated with Ar ions,” Mater. Charact. 60 (2009) 1463. Y. Xi, H. Fan, and W. Liu, “The effect of annealing treatment on microstructure and properties of TiN films prepared by unbalanced magnetron sputtering,” J. Alloy. Compd. 496 (2010) 695. D. Bhaduri, A. Ghosh, S. Gangopadhyay, and S. Paul, “Effect of target frequency, bias voltage and bias frequency on microstructure and mechanical properties of pulsed DC CFUBM sputtered TiN coating,” Surf. Coat. Technol. 204 (2010) 3684. M. Lattemann, U. Helmersson, and J.E. Greene, “Fully dense, non-faceted 111-textured high power impulse magnetron sputtering TiN films grown in the absence of substrate heating and bias,” Thin Solid Films 518 (2010) 5978. C. H. Shin, G. Bugli, and G. D. Mariadassou, “Preparation and characterization of titanium oxynitrides with high specific surface areas,” J. Solid State Chem., 95 (1991) 145. M. H. Kazemeini, A. A. Berezin, and N. Fukuhara, “Formation of thin TiNxOy films by using a hollow cathode reactive DC sputtering system,” Thin Solid Films 372 (2000) 70. Y. Makino, M. Nose, T. Tanaka, M. Misawa, A. Tanimoto, and T. Nakai, “Characterization of Ti(NxOy) coatings produced by the arc ion plating method,” Surf. Coat. Technol. 98 (1998) 934. N. Martin, O. Banakh, A. M. E. Santo, S. Springer, R. Sanjinés, J. Takadoum, and F. Lévy, “Correlation between processing and properties of TiOxNy thin films sputter deposited by the reactive gas plusing technique,” Appl. Surf. Sci. 185 (2001) 123. J. Guillot, A. Jouaiti, L. Imhoff, B. Domenichini, O. Heintz, S. Zerkout, A. Mosser, and S. Bourgeois, “Nitrogen plasma pressure influence on the composition of TiNxOy sputtered film,” Surf. Interface Anal. 34 (2002) 577. J.-M. Chappe, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, and J. Takadoum, “Water as reactive gas to prepare titanium oxynitride thin films by reactive sputtering,” Thin Solid Films 440 (2003) 66. M. J. Jung, K. H. Nam, Y. M. Chung, J. H. Boo, and J. G. Han, “The physiochemical properties of TiOxNy films with controlled oxygen partial pressure,” Surf. Coat. Technol. 171 (2003) 71. E. Alves, A. R. Ramos, N. P. Barradas, F. Vaz, P. Cerqueira, L. Rebouta, and U. Kreissig, “Ion beam studies of TiNxOy thin films deposited by reactive magnetron sputtering,” Surf. Coat. Technol. 180-181 (2004) 372. S. H. Mohamed, O. Kappertz, T. Niemeier, R. Drese, M. M. Wakkad, and M. Wuttig, “Effect of heat treatment on structural, optical and mechanical properties of sputtered TiOxNy films,” Thin Solid Films 468 (2004) 48. M. Braic, M. Balaceanu, A. Vladescu, A. Kiss, V. Braic, and G. Epurescu, “Preparation and characterization of titanium oxy-nitride thin films,” Appl. Surf. Sci., 253 (2007) 8210. N. Martin, J. Lintymer, J. Gavoille, J. M. Chappé, F. Sthal, J. Takadoum, F. Vaz, and L. Rebouta, “Reactive sputtering of TiOxNy coatings by the reactive gas pulsing process. Part I: Pattern and period of pulses,” Surf. Coat. Technol. 201 (2007) 7720. N. Martin, J. Lintymer, J. Gavoille, J.M. Chappé, F. Sthal, J. Takadoum, F. Vaz, and L. Rebouta, “Reactive sputtering of TiOxNy coatings by the reactive gas pulsing process. Part II: The role of the duty cycle,” Surf. Coat. Technol. 201 (2007) 7727. N. Martin, J. Lintymer, J. Gavoille, J.M. Chappé, F. Sthal, J. Takadoum, F. Vaz, and L. Rebouta, “Reactive sputtering of TiOxNy coatings by the reactive gas pulsing process. Part III: The particular case of exponential pulses,” Surf. Coat. Technol. 201 (2007) 7727. M.-C. Lin, L.-S. Chang, and H.C. Lin, “Gas barrier properties of titanium oxynitride films deposited on polyethylene terephthalate substrates by reactive magnetron sputtering,” Appl. Surf. Sci. 254 (2008) 3509. A. Trenczek-Zajac, M. Radecka, K. Zakrzewska, A. Brudnik, E. Kusior, S. Bourgeoisc, M.C. Marco de Lucasc, and L. Imhoff, “Structural and electrical properties of magnetron sputtered Ti(ON) thin films: The case of TiN doped in situ with oxygen,” J. Power Sources 194 (2009) 93. K. Drogowska, N.-T. H. Kim-Ngan, A. G. Balogh, M. Radecka, A. Brudnik, K. Zakrzewska, and Z. Tarnawski, “Diffusion and chemical composition of TiNxOy thin films studied by Rutherford Backscattering Spectroscopy,” Surf. Sci. 604 (2010) 1010. S. K. Rawal, A. K. Chawla, V. Chawla, R. Jayaganthan, and R. Chandra, “Effect of ambient gas on structural and optical properties of titanium oxynitride films,” Appl. Surf. Sci. 256 (2010) 4129. Phase Diagrams for Ceramists, The American Ceramic Society, Inc., (1975) p. 76. J. M. Mwabora, T. Lindgren, E. Avendaño, T. F. Jaramillo, J. Lu, S.-E. Lindquist, and C.-G. Granqvist, “Structure, composition, and morphology of photoelectrochemically active TiO2-xNx thin films deposited by reactive dc magnetron sputtering,” J. Phys. Chem. B 108 (2004) 20193. M. S. Wong, H. P. Chou, and T. S. Yang, “Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst,” Thin Solid Films 494 (2006) 244. D. Yoo, I. Kim, S. Kim, C. H. Hahn, C. Lee, and S. Cho, “Effects of annealing temperature and method on structural and optical properties of TiO2 films prepared by RF magnetron sputtering at room temperature,” Appl. Surf. Sci. 253 (2007) 3888. Y. Nakano, T. Morikawa, T. Ohwaki, and Y. Taga, “Deep-level optical spectroscopy investigation of N-doped TiO2 films,” Appl. Phys. Lett. 86 (2005) 132104. D. Heřman, J. Šŕcha, and J. Musil, “Magnetron sputtering of TiOxNy films,” Vacuum 81 (2006) 285. S. S. Soni, M. J. Henderson, J.-F. Bardeau, and A. Gibaud, “Visible-Light Photocatalysis in Titania-Based Mesoporous Thin Films,”Adv. Mater. 20 (2008) 1493. S. Livraghi, A.M. Czoska, M.C. Paganini, and E. Giamello, “Preparation and spectroscopic characterization of visible light sensitized N doped TiO2 (rutile),” J. Solid State Chem. 182 (2009) 160. T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki, and Y. Taga, “Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping,” Jpn. J. Appl. Phys. 40 (2001) L561. M. Kitano, K. Funatsu, M. Matsuoka, M. Ueshima, and M. Anpo, “Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation,” J. Phys. Chem. B 110 (2006) 25266. H.-Y. Chou, E.-K. Lee, J.-W. You, and S.-S. Yu, “Photo-induced hydrophilicity of TiO2−xNx thin films on PET plates,” Thin Solid Films 516 (2007) 189. L. Wan, J.F. Li, J.Y. Feng, W. Sun, and Z.Q. Mao, “Improved optical response and photocatalysis for N-doped titanium oxide (TiO2) films prepared by oxidation of TiN,” Appl. Surf. Sci. 253 (2007) 4764. S.-M. Chiu, Z.-S. Chen, K.-Y. Yang, Y.-L. Hsu, and D. Gan, “Photocatalytic activity of doped TiO2 coatings prepared by sputtering deposition,” J. Mater. Process. Technol. 192-193 (2007) 60. Q. Li, j. Xue, W. Liang, J.-H. Huang, and J. K. Shang, “Enhanced visible-light absorption in heavily nitrogen-doped TiO2,” Philos. Mag. Lett. Vol. 88, (2008) 231. K. Prabakar, T. Takahashi, T. Nezuka, K. Takahashi, T. Nakashima, Y. Kubota, and A. Fujishima, “Visible light-active nitrogen-doped TiO2 thin films prepared by DC magnetron sputtering used as a photocatalyst,” Renew. Energy 33 (2008) 277. S.-H. Lee, E. Yamasue, H. Okumura, and K. N. Ishihara, “Preparation of N-doped TiOx films as photocatalyst using reactive sputtering with dry air,” Mater. Trans. 50 (2009) 1805. S.-H. Lee, E. Yamasue, H. Okumura, and K. N. Ishihara, “Effect of oxygen and nitrogen concentration of nitrogen doped TiOx film as photocatalyst prepared by reactive sputtering,” Appl. Catal. A-Gen. 371 (2009) 179. C. J. Tavares, S. M. Marques, T. Viseu, V. Teixeira, J. O. Carneiro, E. Alves, N. P. Barradas, F. Munnik, T. Girardeau, and J.-P. Rivière, “Enhancement in the photocatalytic nature of nitrogen-doped PVD-grown titanium dioxide thin films,” J. Appl. Phys. 106 (2009) 113535. S.-H. Lee, E. Yamasue, K. N. Ishihara, and H. Okumura, “Photocatalysis and surface doping states of N-doped TiOx films prepared by reactive sputtering with dry air,” Appl. Catal. B-Environ. 93 (2010) 217. C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout, and J. L. Gole, “Enhanced Nitrogen Doping in TiO2 Nanoparticles,” Nano Lett. 3 (2003) 1049. D. Y. Wang, H. C. Lin, and C. C. Yen, “Influence of metal plasma ion implantation on photo-sensitivity of anatase TiO2 thin films,” Thin Solid Films 515 (2006) 1047. Y. Wang, and D. J. Doren, “First-principles calculations on TiO2 doped by N, Nd, and vacancy,” Solid State Commun. 136 (2005) 186. R. Asahi, and T. Morikawa, “Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis,” Chem. Phys. 339 (2007) 57. Z. Zhao, and Q. Liu, “Designed highly effective photocatalyst of anatase TiO2 codoped with nitrogen and vanadium under visible-light irradiation using first-principles,” Catal. Lett. 124 (2008) 111. H. Gao, J. Zhou, D. Dai, and Y. Qu, “Photocatalytic activity and electronic structure analysis of N-doped anatase TiO2: A combined experimental and theoretical study,” Chem. Eng. Technol. 32 (2009) 867. Y. Yin,W. Zhang, S. Chen, and S. Yu, “Theoretical and experimental study on the electronic structure and optical absorption properties of nitrogen-doped nanometer TiO2,” Mater. Chem. Phys. 113 (2009) 982. Y. Cui, H Du, and L. Wen, “Origin of visible-light-induced photocatalytic properties of S-doped anatase TiO2 by first-principles investigation,” Solid State Commun. 149 (2009) 634. Q. Chen, C. Tang, and G. Zheng, “First-principle study of TiO2 anatase (101) surfaces doped with N,” Physica B 404 (2009) 1074. Commission Internationale de l'Eclairage (1986) Colorimetry, 2nd ed. Publication CIE 15.2-1986, p 83 Colorimetry, CIE Publication, 15, (1971) (Comission Internationale de ĽÉclairage) D.A. Shirley, “High-resolution X-ray photoemission spectrum of the valence bands of gold,” Phys. Rev., B 5 (1972) 4709. P. Lin, C. Deshpandey, H.J. Doerr, R. F. Bunshah, N. Kaufherr, R. Nielsen, and G. Fenske, “Detailed characterization of TiC and TiN coatings prepared by the activated reactive evaporation process,” J. Vac. Sci. Technol. A 5 (1987) 2732. W. C. Oliver, and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments” J. Mater. Res. 7 (1992) 1564. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, “First-principles simulation: ideas, illustrations and the CASTEP code,” J. Phys.: Condens. Matter 14 (2002) 2717. T. H. Fischer, and J. Almlof, “General methods for geometry and wave function optimization,” J. Phys. Chem. 96 (1992) 9768. A. L. Linsebigler, G. Lu, and J. T. Yates, Jr. “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chem. Rev. 95 (1995) 735-758. S. Niyomsoan, W. Grant, D. L. Olson, and B. Mishra, “Variation of color in titanium and zirconium nitride decorative thin films,” Thin Solid Films 415 (2002) 187. PCPDFWIN, version 2.3; International Centre for Diffraction Data, 2002, Ti: #44-1294; TiN #38-1420; TiO #77-2170; Ti3O5 #89-4733; TiO2 #21-1272. C. S. Barrett, and T. B. Massalski, Structure of Materials, McGraw-Hill, Colorado, 1980, p.204. I. Bertóti, M. Mohai, J.L. Sullivan, and S. O. Saied, “Surface characterisation of plasma-nitrided titanium: an XPS study,” Appl. Surf. Sci. 84 (1995) 357. M. V. Kuznetsov, M. V. Zhuravlev, E. V. Shalayeva, and V. A. Gubanov, “Influence of the deposition parameters on the composition, structure and X-ray photoelectron spectroscopy spectra of Ti-N films,” Thin Solid Films 215 (1992) 1. N. C. Saha, and H. G. Tompkins, “Titanium nitride oxidation chemistry: an x-ray photoelectron spectroscopy study”, J. Appl. Phys., 72 (1992) 3072. M. V. Kuznetsov, J. F. Ahuravlev, and V. A. Gubanov, “XPS analysis of adsorption of oxygen molecules on the surface of Ti and TiNx films in vacuum” J. Electron Spectrosc. Related Phenom. 58 (1992) 169. M. A. Centeno, M. Paulis, M. Montes, and J. A. Odriozola, “Catalytic combustion of volatile organic compounds on gold/titanium oxynitride catalysts”, Appl. Catal. B-Environ. 61 (2005) 177. Shao Hsien Chiu, “Synthesis and Characterization of Nano-crystalline TiNxOy Thin Films by Unbalanced Magnetron Sputtering System.” National Tsing Hua University, Department of Engineering System Science (2006). M. V. Kuznetsov, Ju. F. Ahuravlev, V. A. Zhilyaev, and V. A. Gubanov, “XPS study of the nitrides, oxides and oxynitrides of titanium” J. Electron Spectrosc. Related Phenom. 58 (1992) 1. X. Chen, and C. Burda, “Photoelectron spectroscopic investigation of nitrogen- doped titania nanoparticles,” J. Phys. Chem. B 108 (2004) 15446. S. Sato, R. Nakamura, and S. Abe, “Visible-light sensitization of TiO2 photocatalysts by wet-method N doping,” Appl. Catal. A: Gen. 284 (2005) 131. O. Diwald, T. L. Thompson, E. G. Goralski, S. D. Walck, and J. T. Yates Jr., “The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals,” J. Phys. Chem. B 108 (2004) 52. Y. Cong, J. Zhang, F. Chen, and M. Anpo, “Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity,” J. Phys. Chem. C 111 (2007) 6976. M. Drygas, C. Czosnek, R. T. Paine, and J. F. Janik, “Two-stage aerosol synthesis of titanium nitride TiN and titanium oxynitride TiOxNy nanopowders of spherical particle morphology,” Chem. Mater., 18 (2006) 3122. J. F. Watts, and J. Wolstenholme, “An Introduction to Surface Analysis by XPS and AES,” John Wiley & Sons, England, (2003) pp 76. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, J. Chastain, and R. C. King, Jr. Handbook of X-ray photoelectron spectroscopy, ULVAC-PHI, Inc. and Physical Electronics USA, Inc. p. 261. L. Porte, L. Roux, and J. Hanus, “Vacancy effects in the x-ray photoelectron spectra of TiNx,” Phys. Rev. B., 28 (1983) 3214. A. Styervoyedov, and V. Farenik, “Formation of Ti and TiN ultra-thin films on si by ion beam sputter deposition.” Surf. Sci. 600 (2006) 3766. M. E. Day, M. Delfino, J. A. Fair, and W. Tsai, “Correlation of electrical resistivity and grain size in sputtered titanium films,” Thin Solid Films 254 (1995) 285. A. Bendavid, P. J. Martin, G. B. Smith, L. Wielunski, and T. J. Kinder, “The mechanical and structural properties of Ti films prepared by filtered arc deposition,” Vacuum 47 (1996) 1179. G. Abadias, Y. Y. Tse, Ph. Guérin, and V. Pelosin “Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering,” J. Appl. Phys. 99 (2006) 113519. F. Kauffmann, B. Ji, G. Dehm, H. Gao, and E. Arzt, “A quantitative study of the hardness of a superhard nanocrystalline titanium nitride/silicon nitride coating,” Scr. Mater. 52 (2005) 1269. F. Fabreguette, L. Imhoff, J. Guillot, B. Domenichini, M. C. Marco de Lucas, P. Sibillot, S. Bourgeois, and M. Sacilotti, “Temperature and substrate influence on the structure of TiNxOy thin films grown by low pressure metal organic chemical vapour deposition,” Surf. Coat. Technol., 125 (2000) 396. M. H. Chan, and F. H. Lu, “X-ray photoelectron spectroscopy analyses of titanium oxynitride films prepared by magnetron sputtering using air/Ar mixtures,” Thin Solid Films 517 (2009) 5006. M. H. Chan, and F. H. Lu, “Characterization of N-doped TiO2 films prepared by reactive sputtering using air/Ar mixtures,” Thin Solid Films 518 (2009) 1369. M. Kitano, K. Funatsu, M. Matsuoka, M. Ueshima, and M. Anpo, “Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation,” J. Phys. Chem. B 110 (2006) 25266. M. Sathish, B. Viswanathan, R. P. Viswanath, and C. S. Gopinath, “Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst,” Chem. Mater. 17 (2005) 6349. C. C. Chen, H. L. Bai, and C. L. Chang, “Effect of plasma processing gas composition on the nitrogen-doping status and visible light photocatalysis of TiO2,” J. Phys. Chem. C 111 (2007) 15228. J. Tauc, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15 (1966) 627. X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang, and K. Klabunde, “Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping,” J. Catal. 260 (2008) 128. I. Barin, In Thermochemical data of pure substances, 3rd ed. G. Platzki (Eds.), (VCH Publishers, New York, 1996), pp. 567-1880. F. H. Lu, B. F. Jiang, J. L. Lo, and M. H. Chan, “Influences of oxygen impurity contained in nitrogen on the reaction of titanium with nitrogen,” J. Mater. Res. 24 (2009) 2400. A. Calka, “Formation of titanium and zirconium nitrides by mechanical alloying,” Appl. Phys. Lett. 59 (1991) 1568. H. Zhang, E. H. Kisi, and S. A. Myhra, “Solid solution pumping mechanism for the nitrogenation of titanium during mechanical deformation in air,” J. Phys. D: Appl. Phys. 29 (1996) 1367. I. O. Khomenko, A. S. Mukasyan, V. I. Ponomaryev, I. P. Borovinskaya, and A.G. Merzhanov, “Dynamics of phase forming processes in the combustion of metal-gas systems,” Combust. Flame 92 (1993) 201. A. Grill, Cold plasma in material fabrication; IEEE Press: New York, (1994); pp 21. D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing: Film Formation, Adhesion, Surface Preparation and Contamination Control, Noyes Publications, New Jersey, 1998, pp. 368. R. W. Dreyfus, J. M. Jasinski, R. E. Walkup, and G. S. Selwyn, “Optical diagnostics of low pressure plasmas,” Pure Appl. Chem. 57 (1985) 1265. G. S. Chen, C. C. Lee, H. Niu, W. Huang, R. Jann, and T. Schütte, “Sputter deposition of titanium monoxide and dioxide thin films with controlled properties using optical emission spectroscopy,” Thin Solid Films 516 (2008) 8473. M. Neuhäuser, S. Bärwulf, H. Hilgers, E. Lugscheider, and M. Riester, “Optical emission spectroscopy studies of titanium nitride sputtering on thermoplastic polymers,” Surf. Coat. Technol. 116-119 (1999) 981. Rolf E. Hummel, Electronic properties of materials, 3rd ed. Springer-Verlag, New York, (2000) p.55 J. P. Perdew, and M. Levy, “Physical content of the exact Kohn-Sham orbital energies: Band gaps and derivative discontinuities,” Phys. Rev. Lett. 51 (1983) 1884.
摘要: 
本研究主要是在濺鍍法中以空氣做為反應性氣體製備氮化鈦(TiN)、氮氧化鈦(TiNxOy)與氮摻雜二氧化鈦(N-doped TiO2)薄膜並探討其特性。這三種薄膜具有優異的物理與化學性質是具相當重要工業應用之材料,而傳統上利用濺鍍法製備上述三種薄膜幾均以純氮氣或氮/氧混合氣體做為反應性氣體。若以空氣做為反應性氣體,可在高背景壓力即低真空下製備薄膜,此製程方法可大幅縮短抽真空所耗費的時間,具極大之工業應用價值。
實驗之主要變數為空氣/氬氣流量比值,範圍控制在0.05到2.00,其他製程參數則固定在工作壓力0.13 Pa、濺鍍功率400 W及基板偏壓為50V,以探討其對薄膜特性之影響。由於利用空氣做為反應性氣體,即不須在高真空,而可在較高背景壓力1.3×10-2 Pa (低真空)下操作。另有些部份會利用N2做為反應性氣體製備TiN以及空氣做為反應性氣體製備TiNxOy薄膜,此二者均在高真空下操作,以做對照。
當空氣/氬氣流量比值為0.10~0.15時,所得薄膜為岩鹽型TiN結構,N/Ti比為0.80–0.83而氧含量為9–13 at%、電阻率則為110–130 μΩ•cm、與硬度為26–27 GPa,此與文獻所報導的氮化鈦性質比對後,證實以空氣做為反應性氣體能成功製備出氮化鈦薄膜。本研究顯示在空氣/氬氣流量比值較低時,可製備出氮化鈦薄膜之原因是動力學反應主導所致。由於電漿中氧的解離能比氮的高,使氮較易解離且增加其在低流量比值時之碰撞機率。另推測氮化鈦中固溶少量的氧可以穩定氮化物的結構。
隨著空氣/氬氣流量比值增加到0.18–0.40,薄膜亦具有岩鹽型結構,然其繞射峰往高角度偏移,是為結晶之氮氧化鈦薄膜,其氧含量則增加到22–34 at%、電阻率為230–1460 μΩ•cm、硬度則為25–31 GPa。當空氣/氬氣流量比值超過0.50,結果顯示此時薄膜為非晶質結構,氧含量則增加至39–43 at%、電阻率為2×104–1×106 μΩ•cm。
當空氣/氬氣流量比值增加到1.20時,生成之薄膜為氮摻雜Ti3O5,隨著流量比達到1.40,薄膜轉變為氮摻雜Ti3O5和銳鈦鑛相TiO2混合相。而在流量比值增加到1.80時可得到氮摻雜銳鈦鑛相TiO2。XPS結果顯示氮摻雜銳鈦鑛TiO2氧含量可達7.5 at%。氮摻雜銳鈦鑛TiO2能隙為3.05-3.11 eV,且其能隙隨氮含量增加呈線性下降趨勢。利用可見光可降解亞甲基藍染劑之實驗,顯示氮摻雜銳鈦鑛二氧化鈦具有極佳可見光光觸媒效應。
CASTEP 理論計算不同氮摻雜在二氧化鈦之位置與不同氮摻雜濃度和氧空孔對二氧化鈦能帶結構之影響。結果顯示,氮取代氧的能隙比氮間隙原子之摻雜導致能隙要小,而氧空孔會使二氧化鈦能隙增加。當氧空孔和不同濃度的氮取代氧同時存在時,隨著氮摻雜濃度增加,能隙會下降,此結果可驗證我們之實驗結果。
本研究單純控制不同空氣/氬氣流量比,不僅可製備氮化鈦、氮氧化鈦及氮摻雜二氧化鈦單層薄膜,亦可製備Ti/TiN/TiNxOy/N-doped TiO2 等之多層膜。此製程研究方法簡便且可大幅縮短製程時間,更可應用至其他類似氮化物、氮氧化物與氮摻雜氧化物之薄膜系統,具有極廣泛的工業用途。

This study focuses on the preparation and characterization of TiN, TiNxOy, and N-doped TiO2 thin films by reactive sputtering using air as a reactive gas. The films exhibiting many superior physical and chemical properties are of technologically important materials and conventionally prepared by reactive sputtering using nitrogen and/or oxygen as reactive gases. Replacing nitrogen and/or oxygen with air as a reactive gas allows the process to be conducted at high base pressures (low vacuum), which can then reduce drastically the processing time and lead to many industrial applications.
The prime deposition variable was simply the air/Ar flow ratio that was varied in a wide range of 0.05-2.00. The deposition parameters of the working pressure (= 0.13 Pa), power (= 400 W), and substrate bias (= 50 V) were fixed throughout the study. Since air was used as a reactive gas, high vacuum was not needed and the base pressure of 1.3×10-2 Pa (low vacuum) was conducted. For comparison in some cases, N2 was also used as a reactive gas for making TiN films at a low base pressure of 6.6×10-4 Pa (high vacuum), whereas TiNxOy films were also prepared by using air as a reactive gas in such a base pressure.
As the air/Ar flow ratio reached 0.10-0.15, the films revealed the characteristic rock-salt structured TiN. The N/Ti of the films was 0.80-0.83 with 9-13 at% of oxygen. The determined resistivities and hardnesses of the films were in the range of 110-130 μΩ∙cm and 26-27 GPa, respectively. All obtained data fulfill the characteristics of TiN films. Kinetic formation apparently prevails over thermodynamic predictions at low air/Ar ratios. In such plasma, the dissociation energy of oxygen is much larger than that of nitrogen, which enhances the impingement rate of nitrogen. The dissolution of oxygen in the TiN films seems also to stabilize the nitride structure.
When the air/Ar ratio was in the range of 0.18-0.40, the films had the rock-salt structure with the diffraction peaks shifting to higher angles, characterized as crystalline TiNxOy. As the ratio exceeded 0.50, the films were amorphous. The oxygen content in the TiNxOy films increased from 22-34 at% (crystalline) to 39-43 at% (amorphous). The resistivity was about 230-1460 μΩ•cm in the crystalline regime and increased rapidly up to 2×104-1×106 μΩ•cm as the films were amorphous. The hardness of the crystalline TiNxOy films was in the range of 25-31 GPa.
As the air/Ar flow ratio reached 1.20, the obtained films were N-doped Ti3O5 and transformed into N-doped Ti3O5 with N-doped TiO2 mixed phases at the air/Ar ratios of 1.40-1.60. N-doped anatase TiO2 films obtained at the air/Ar ratios of 1.80-2.00 could incorporate up to about 7.5 at% of substitutional nitrogen. The measured optical band gaps of the N-doped anatase TiO2 films varied from 3.05 to 3.11 eV. The band gap decreased almost linearly with the nitrogen concentration. N-doped TiO2 films exhibited superior visible-photocatalytic properties from the degradation of Methylene blue test.
The band structures of the anatase TiO2 with oxygen vacancies and/or N dopants were calculated using the CASTEP program. The substitutional dopant (NO) was more photocatalytic-effective than the interstitial dopant NI(c), while the band gap increased with increasing the oxygen vacancies. The calculations for the anatase TiO2 with a vacancy and various N dopants concentration reveal that the band gap decreased with the concentration of N dopants, which verifies our above experimental results.
Tailoring simply the air/Ar flow ratios in sputtering can yield not only single layers but multilayers consisting of TiN, TiNxOy, and N-doped TiO2 thin films. This green technique may be extended to make other similar nitride, oxynitride, and nitrogen-doped oxide thin film systems, which has great industrial applications.
URI: http://hdl.handle.net/11455/10887
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.