Please use this identifier to cite or link to this item:
標題: 氧化銦錫薄膜濕式蝕刻製程中銦離子回收之研究
Investigation of In2(C2O4)3 Recycling for ITO Thin-Film Wet Etching Process
作者: 蔡和橙
Tsai, George
關鍵字: ITO etches;ITO蝕刻;the oxalic acid;indium and ion;ion exchange resin;草酸;銦離子;離子交換樹脂
出版社: 材料科學與工程學系所
引用: [1]龍柏華,濕蝕刻製程介紹暨機台原理簡介,光連:光電產業與技術情報,48期,pp. 37-41,2003年。 [2]蕭因秀,ITO蝕刻廢液中銦金屬吸附回收之研究,國立成功大學資源工程學系碩士班論文,2009年。 [3]劉軍深、李桂華。螯合樹脂法分離回收鎵和銦的研究進展,稀有金屬與硬質合金,第33卷,第4期,pp. 42-45,2005年。 [4]蔡敏行、吳俊毅、蕭庭哲、陳偉聖,銦錫氧化物 (ITO) 中所含有價金屬之回收裝置,中華民國專利 M327747,2006年。 [5] J. A. Schufle and H. M. Eiland, ‘Indium halide complexes studied by ion-exchange methods,’ Journal of the American Chemical Society.” Vol 76, No 4, pp. 960-962, 1954. [6] M. Nisiura, K. Ioue, K. Ohto, H. Harada and H. Kawakita, ‘Recovery of indium from waste liquid crytal display,’ The 9th International Symposium on East Asian Resources Recycling Technology, Tokyo, 23 May 2006. [7]丁志華、戴寶通,田口實驗計畫法簡介(I),國家毫微米元件實驗室,毫微米通訊,第八卷,第三期,pp. 7-11,2001年。 [8]張清亮、蔡志弘、劉紹翰,六標準差之推行品質與應用探討,機械工業雜誌,244期,pp. 254, 2003年。 [9]羅正忠、張鼎張 (合譯),半導體製程技術導論, (Hong Xiao, 原著書名),歐亞書局,pp. 7-11,2002年。 [10]李建武等合編,生物化學實驗原理和方法,pp. 59-75,藝軒圖書出版社,1999年。 [11] Joseph A. Schufle, and H. Morris Eiland. Indium Halide Complexes Studied By Ion-exchange Methods. “Journal of the American Chemical Society.” vlo 76 , no 4, pp. 958-962. 1954. [12] M.Chakravorty and S. M. Khopkar. Anion-exchange separation of gallium from indium, thallium, aluminium and other elements in malonic acid. “Chromatographia.” vol 9, no 5, pp. 230-231. 1976. [13] 陳瓊龍、陳見財、鄭建南,電鍍業應用循環過濾法減少脫脂槽液廢棄量與重金屬廢水離子,交換法資源化回收案例工程實務技術研討會論文集,Taipei, Aug. 3-8,1994年。 [14] DIAION 技術手冊 (高雄,太洋化成股份有限公司), [15] 劉軍深、姚淑云、李桂華、宋文芹、王春華、潘艷艷、劉訓勇及 崔風雲,穩定化P204 浸漬樹脂吸附銦的性能,「稀有金屬」, 第31 卷,第6 期,pp. 829-833,2007年。 [16] 劉軍深及袁延旭,P507 萃淋樹脂在鹽酸介質中吸附銦(Ⅲ)的 性能,稀有金屬與硬質合金,第36 卷,第4 期,pp.1-4 ,2008年。 [17] Proc.Indian Acad Sci,Vol.113,No.4, pp. 275-284, August 2001. [18] C. E. Harland, Ion exchange-Theory and Practice, Royal Society of Chemistry Paperbacks, pp. 3-8, UK, 1994. [19] Control and Treatment Technology for the Metal Finishing Industry – Ion Exchange, pp. 4-10, United States, June 1981.
在TFT-LCD製程中,ITO薄膜濕蝕刻技術,使用草酸作為蝕刻液,其中ITO膜含氧化銦錫(Indium Tin Oxide, ITO)(銦:錫=9:1),在草酸的反應下,產生中間產物,含銦離子,再形成草酸銦結晶,草酸銦結晶為難溶固體,不僅使產品產良率損失,亦極容易造成濾心阻塞,草酸使用生命期縮短,成本提高,本研究使用離子交換樹脂方法,於蝕刻線上即時將含銦離子吸附下來,阻斷草酸銦的結晶機構,其優點為,使草酸及濾心生命期延長,減少草酸銦結晶所造成的產品良率損失,另吸附下來的含銦離子可輕易的進行銦回收。於草酸蝕刻液槽加裝迴流式離子交換樹脂塔,將蝕刻後產生的含銦離子吸附下來,阻斷草酸銦結晶的形成。並且快速且完全的將含銦離子吸附下來,且不影響草酸濃度,且草酸經由樹脂塔的吸附,由原本溶液中銦離子濃度250-350ppm,大幅降低至100ppm以下,並可持續進行ITO蝕刻,而含銦離子完全吸附於離子交換樹脂,草酸銦結晶減少,草酸可持續使用,銦離子因濃縮易於回收。後來於實際運用中發現,再生後銦離子樹脂易於初期使用上,極容易釋出氯離子,導致玻璃基板上殘留,當樹脂塔停機再開啟時,由於樹脂本身為可逆反應,當停機時會造成沉澱物產生,並大量吐出銦,驗證結果後發現一定需再循環清洗後方可再使用。經後續實驗結果可得知,再生樹脂的氯含量檢測<500ppm (ppm=mg/kg),才能確保對玻璃機板無異常影響。

During TFT-LCD system processes, ITO film wet etching technology uses oxalic acid (H2C2O4) as an etching chemical, among which, ITO film includes and oxidizes indium and stannic (Indium Tin Oxide, ITO) (Indium: stannic =9:1). Under the response of the oxalic acid, and its interior product, the resulted indium ion will be included (In3 +), which then forms indium crystallization of oxalic acid In2(C2O4) 3, indium crystallization. It is difficult to dissolve In2(C2O4) 3 from its solid state, which creates products with good yield; moreover, it is very easy to filter out oxalic acid (H2C2O4). Due to a short life-cycle, costs are increased. This study used the method of ion exchange resin, applied by etching it immediately to on-line indium ion(In3 +), and absorbing blocks of the crystallization organization of the oxalic acid indium In2(C2O4) 3. Its advantage is that, the oxalic acid and filter life-time is lengthened, reducing the indium crystallization of oxalic acid In2(C2O4) 3. It causes products to provide good yield, with little loss, and absorb indium ion (In3 +), providing good separate adsorption, while easily recycling the indium (In3 +).
Using the etchant trough to install the backset current type ion exchange resin tower, in addition to the oxalic acid system, results in the absorption of the indium ion, blocked the forming of the indium crystallization of oxalic acid after etching.
The fast and complete absorption of the indium ion does not influence the concentration of oxalic acid, through adsorption by resin tower, the concentration of indium ion in the oxalic acid solution decreased greatly from 250-350ppm to below 100ppm, and it is the sustainable it carry on by ITO etching, and include indium ion (In3 +). Total absorption of the ion exchange resin and indium crystallization of oxalic acid In2(C2O4) 3 reduces the oxalic acid, which is used sustainably, as indium and ion are thick and easy to retrieve.
Practical later use of recycled indium ion resin is easy in its initial stage, and is extremely apt to release chlorine ion (Cl-) after regeneration, while ITO residues cause substrates on the glass, thus, when the resin tower shuts down and turns on, as the resin itself is a reversible reaction, it will cause precipitate to be produced when shutting down, thus, the appearance of indium (In3 +), .proving that the results are sure to require recycling to clean (Chemical Flush) for further use.
The experimental results showed that, the chlorine (Cl-) of the recycled resin content measures <500ppm (ppm=mg/kg), and could guarantee no unusually influenced glass substrates.
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.