Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/10928
DC Field | Value | Language |
---|---|---|
dc.contributor | 蔡毓楨 | zh_TW |
dc.contributor | Yu-Zhen Tsai | en_US |
dc.contributor | 石燕鳳 | zh_TW |
dc.contributor | Yan-Feng Shi | en_US |
dc.contributor.advisor | 吳宗明 | zh_TW |
dc.contributor.advisor | Tzong-Ming Wu | en_US |
dc.contributor.author | 蔡昂憲 | zh_TW |
dc.contributor.author | Tsai, Ang-Hsien | en_US |
dc.contributor.other | 中興大學 | zh_TW |
dc.date | 2011 | zh_TW |
dc.date.accessioned | 2014-06-06T06:46:39Z | - |
dc.date.available | 2014-06-06T06:46:39Z | - |
dc.identifier.citation | 1.H. Staudinger, J. Fritschi, J. Helv. Chim. Acta., 5(1922)785. 2.陳淑菁、蘇芳儀、盧昭蓉. 高分子的世界. 國立科學工藝博物館,2001. 3.林建中. 高分子材料性質與應用. 高立圖書公司. 1998. 初版. 4.郭建志. 高分子的高科技應用. 高立圖書公司. 1996. 4版. 5.馬振基. 奈米材料科技原理及應用. 全華科技圖書股份有限公司 2003. 初版. 6.T. Ondarcuhu, C. Joachim, Europhys Lett., 42(1998)215. 7.L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang. D. Zhu, Angew. Chem. Int. Ed., 41 (2002)1221. 8.C. R. Martin, Chem. Mater., 8(1996)1739. 9.P.X. Ma, R. Zhang, J. Biomed Mat. Res. Part A, 46(1999)60. 10.G. J. Liu, J. F. Ding, L. J. Qiao, A. Guo, B. P. Dymov, J. T. Gleeson, T. Hashimoto, K. Saijio, Chem-A Eur. J., 5(1999)2740. 11.G. M. Whitesides, B. Grzybowski, Science, 295(2002)2418. 12.J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, N. C. Beck Tan, Polymer, 42(2001)8163. 13.H. Fong , D. H. Reneker, In Structure Formation of Polymeric Fibers; Salem, D. R., Sussman , M. V., Eds., Hanser : Munchen.(2000)225. 14.S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, Z. Ma. An Introduction To Electrospinning And Nanofibers. (2005)7. 15.http://en.wikipedia.org/wiki/Amide 16.http://en.wikipedia.org/wiki/Nylon 17.樊新民, 工程塑料及其應用, 機械工業出版社, 中國. 18.王利祥, 王佛松, 應用化學, 7(1990)1. 19.H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J. Chem. Soc. Chem. Comm., (1977) 578. 20.D. Kumar, R. C. Sharma, Eur. Polym. J., 34(1998)1053. 21.M. R. Anderson, B. R. Matter, H. Reiss, R. B. Kaner, Science, 252 (1991)1412. 22.Y. Cao, P. Smith, Polymer, 34(1993)3139. 23.M. G. Han, S. S. Im, J Appl. Polym. Sci., 67(1998)1863. 24.R. Faez, W. A. Gazotti, M-A. D. Paoli, Polymer, 40(1999)5497. 25.S. H. Goh, H. S. O. Chan, C. H. Ong, J. Appl. Polym. Sci., 68(1998)1839. 26.Y. Wei, C. Yang, G. Wei, G. Ferg, Synth. Met., 84(1997)289. 27.B. Wessling, Synth. Met, 45(1991)119. 28.J. Stejskal, P. Kratochvil, Polymer, 37(1996)367. 29.E. C. Venancio, C. A. R. Costa, S.A.S. Machado, A.J. Motheo, Electrochemistry Communications, 3(2001)229. 30.S. Uemura, K. Teshima, S. Tokuda, N. Kobayashi, R. Hirohashi, Synth. Met., 101(1999)701. 31.http://www.nobel.se/chemistry/laureates/2000/chemadv.pdf 32.Y. Geng, J. Li, Z. Sun, X. Jing, F. Wang, Synth. Met., 96(1998)1. 33.D. M. Mohilner, R. N. Adams, W. J. Argersinger, J. Am. Chem. Soc, 84(1962)3618. 34.P. J. Nigrey, D. F. Macinnes, J. Electroanal. Chem., 128(1981)1651. 35.W. N. Allen, P. Prant, C. A. Carosella, Synth. Met., 1(1980)151. 36.L. Olmedo, P. Hourquebie, F. Jousse, H. S. Nalwa, Handbook of Organic Conductive Molecules and Polymers, John Wiley, New York, 2(1997)548. 37.Y. Fong, J. B. Schlenoff, Polymers, 36(1995)639. 38.http://en.wikipedia.org/wiki/Aniline 39.A. G. Green, A. E. Woodhead, Journal of the Chemical Society Transactions, 97(1910)2388. 40.J. C. Chiang, A. G. MacDiarmid, Synth. Met., 13(1986)193. 41.W. S. Huang, B. D. Humphrey, A. G. MacDiarmid, J. Chem. Soc. Fararday Trans., 82(1986)2385. 42.J. Anand, S. Palaniappan, D. N. Sathyanarayana, Polym. Sci., 23(1998)993. 43.H. Weiss, O. Pfefferkorn, G. Kotora, B. D.Humphrey, J. Electrochem. Soc., 36(1989)3711. 44.M. Morita, I. Hashida, Macromol. Chem., 193(1992)921. 45.M. Morita, I. Hashida, J. Appl. Polym. Sci., 41(1990)1073. 46.L. Terlemezyan, M. Mihailov, B. Ivanova, Polym. Bull., 29(1992)283. 47.J. Langer, Solid State Commum, 26(1978)839. 48.A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. LD. Somasiri,W. Wu, S. I. Yaniger, Mol. Cryst. Liq. Cryst., 121(1985)173. 49.W. W. Focke, G. E. Wnek, Y. Wei, J. Phys. Chem. 91(1987)5813. 50.S. P. Armes, J. F. Miller, Synth. Met., 22(1988)385. 51.N. V. Blinova, J. Stejskal, M. Trchova, J. Prokes, M. Omastova, Eurpopean Polymer Journal, 43(2007)2331. 52.B. J. Kim, S. G. Oh, M. G. Han, S. S. Im, Synth. Met., 122(2001)297. 53.M. G. Han, S. K. Cho, S. G. Oh, S. S. Im, Synth. Met., 126(2002)53. 54.R. Parthasarathy, C. R. Martin. Nature, 369(1994)298. 55.Z. Zhang, Z. Wei, L. Zhang, M. Wang, Acta. Materialia., 53(2005)1373. 56.B. J. Kim, S. G. Oh, M. G. Han, Langmuir, 16(2000)5841. 57.D. Ichinohe D, T. Aral, H. Kise, Synth. Met., 84(1997)75. 58.C. Yong, S. Paul, J. Alan, US Patent:5624605 (1997). 59.J. Tang, X. Jing, B. Wang, F. Wang, Synth. Met., 24(1988)231. 60.http://en.wikipedia.org/wiki/Pyrrole 61.A. Angeli, A. Gazz. Chim. Ital., 46(1916)279. 62.A. Dall''Olio, G. Dascola, V. Varacca, V. Bocche, C. R. Acad. Sci., 433 (1968) 267C. 63.A. F. Diaz, K. K. Kanazawa, G. P. Gardini, J. Chem. Soc. Chem. Commun., (1979)635. 64.K. K. Kanazawa, A. F. Diaz, R. F. Geiss, W. D. Gill, J. F. Kwak, J. A. Logan, J. Chem. Soc. Chem. Commun.,(1979)854. 65.G. P. Gardini, Adv. Heterocyclic Chem., 15 (1973) 67. 66.S. P. Armes, Synth. Mat. 20(1987)365. 67.J. Duchet, R. Legras, S. Demoustier-Champagne, Synth. Met., 98(1998)113. 68.G. Inzelt, M. Pineri, J. W. Schultze, M. A. Vorotyntsev, Electrochim. Acta., 45(2000)2403. 69.K. W. Oh, H. J. Park. S. H. Kim, J. Appl. Polym. Sci., 91(2004)3659. 70.G. Wegner, Angew. Chem. Int. Ed. Engl., 20(1981)361. 71.A. Formhals, US Patent 1975504(1934) 72.A. Formhals, US Patent 2160962(1939) 73.A. Formhals, US Patent 2187306(1940) 74.H. L. Simons, US Patent 3280229(1966) 75.L. Larrondo, Manley John, R. S. T. J. Polym. Sci. Polym. Phys., 19(1981)909. 76.J. Doshi, D. H. Reneker, J. Electrostat., 35(1995)151. 77.H. Fong, I. Chun, D. H. Reneker. Polymer, 40(1999)4585. 78.C. J. Buchko, L. C. Chen, Y. Shen, D. C. Martin, Polymer, 40(1999)7397. 79.Y. Zhang, Y. Huang, L. Wang, F. Li, G. Gong, Materials Chemistry and Physics., 91(2005)217. 80.J. Doshi, D. H. Reneker, J. Electrostat., 35(1995)151. 81.X. Fang, D. H. Reneker, J. Macromolecular Sci-Phys., 36(1997)169. 82.A. Buer, S. C. Udbolue, S.B. W Arner. Textile Res. J., 71(2001)323. 83.M. Diaz, N. J. Pinto, J. Gao, A. G. MacDiarmid, In: Proceeding of the national conference on undergraduate research (NCUR). Lexington, Kentucky; 69(2001)17. 84.A. G. MacDiarmid, W. E. Jones, Jr., I. D. Norris, J. Gao, A. T. Johnson, Jr., N. J. Pinto, J. Hone, B. Han, F. K. Kp, H. Okuzaki, M. Llaguno, Synth. Met., 119(2001)27. 85.A. Theron, E. Zussman, A. L. Yarin, Nanotechnology, 12(384)2001. 86.X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, Polymer, 43(2002)4403. 87.J. Kameoka, R. Orth, Y. Yang, D. Czaplewski, R. Mathers, G. Coates, H. G. Craighead, Nanotechnology, 14(2003)1503. 88.J. S. Choi, S. W. Lee, J. Bio Macrom., 34(2004)249. 89.X. H. Qin, Y. Q. Wan, J. H. He, J. Zhang, J. Y. Yu, S.Y. Wang, Polymer, 45(2004)6409. 90.B. Kim, H. Park, Mater. Lett., 59(2005)829. 91.C. Zhang, X. Yuan, L. Wu, Y. Han, J. Sheng, European Polymer Journal. 41(2005)423. 92.L. M. Guerrinia, M. C. Brancifortia, T. Canovab, R. E. S. Bretas, Mat. Res., 12(2009)181. 93.K. Ohkawa, D. Cha, Macromol Rapid Commun., 25(2004)600. 94.馮淑芹等, 溶劑對靜電紡PA6纖維可紡性的影響. 合成纖維工業, 30(2007)8. 95.K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, S. W. Choi. J. Polym. Sci., Part:B, Polym. Phys., 41(2003)1256. 96.K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, N. H. Sung. J. Polym. Sci., Part:B, Polym. Phys., 40(2002)2259. 97.G. Larsen, R. Spretz, R. Velarde-Ortiz. Adv. Mater., 16(2004)166. 98.H. Liu, Y. L. Hsieh, J. Polym. Sci. B. Polym. Phys. Ed., 40(2002)2119. 99.P. K. Baumgartyen, J. Colloid Interface Sci., 36 (1971) 71. 100.S. Megelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, Macromolecules, 35 (2002) 8456. 101.D. Li, Y. Xia, Nano Letters, 3 (2003) 555. 102.X. Yuan, Y. Zhang, C. Dong, J. Sheng, Polym. Int., 53 (2004) 1704. 103.X. M. Mo, C. Y. Xu, M. Kotaki, S. Ramakrishna, Biomaterials, 25(2004)1883. 104.J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. Beck Tan, Polymer, 42(2001)261. 105.R. V. N. Krishnappa, K. Desai. C. Sung, J. Mater. Sci., 38(2003)2357. 106.S. Zhao, X. Wu, L. Wang, Y. Huang, J. Appl. Polym. Sci., 91(2003)242. 107.K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, N. H. Sung, J. Polym. Sci., PartB, Polym. Phys., 40 (2002) 2259. 108.M. M. Demir, I. Yilgor, E. Yilgor, B. Erman, Polymer, 43 (2002) 3303. 109.C. Mit-uppatham, M. Nithitanakul, P. Supaphol, Macromol. Chem. Phys., 205 (2004) 2327. 110.C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, J. F. Rabolt, Macromolecules, 37 (2004) 573. 111.W. Takashima, M. Kancko, K. Kancto, A. G. Macdiarmid, Synth. Met., 71 (1995) 2265. 112.G. E. Collins, L. J. Buckley, Synth. Met., 78(1996)93. 113.K. W. Oh, K. H. Hong, S. H. Kim, J. Appl. Polym. Sci., 74(1999)2094. 114.K. W. Oh, K. H. Hong, T. J. Kang, J. Appl. Polym. Sci., 92(2004)37. 115.K. W. Oh, S. H. Kim, E. A. Kim, J. Appl. Polym. Sci., 81(2001)684. 116.K. B. Chen, K. C. Lee, T. H. Ueng, K. J. Mou, Composites : Part A. 33(2002)1219. 117.Y. Dzenis, Y. Wen, Mat Res Soc Symp. Proc., 702 (2002)U5.4.1. 118.Y. Srivastava, I. Loscertales, M. Marquez, T. Thorsen, Microfluid. Nanofluid.(2008)245. 119.J. E. Diaz, A. Femandez-Nieves, A. Barrero, M. Marquez, I. G. Loscertales, J. Phys. : Conf, Ser. 127(2008)1. 120.K. S. Lee, G. B. Blanchet, F. Gao, Y. L. Loo, Appl. Phy. Letts., 86(2005)074102. 121.M. B. Keivani, K. Zare, M. Aghaie, H. Aghaie, M. Monajjemi, E-Journal of Chemistry, 7(2010)105. 122.K. W. Oh, H. J. Park, S. H. Kim, J. Appl. Polym. Sci., 88(2003)1225. 123.F. Ferrero, L. Napoli, C. Tonin, A. Varesano, J. Appl. Polym. Sci., 102(2006)4121. 124.L. Dall’Acqua, C. Tonin, A. Varesano, M. Canetti, W. Porzio, M. Catellani, Synth. Met., 156(2006)379. 125.A. Kaynak, S. S. Najar, R. C. Foitzik, Synth. Met., 158(2008)1. 126.S. Nair, S. Natarajan, S. H. Kim. Macromol. Rapid Commun. 26(2005)1599. 127.F. Granato, A. Bianco, C. Bertarelli, G. Zerbi, Macromol. Rapid Commun. 3(2009)453. 128.Z. M. Huanga, Y. Z. Zhang, M. Kotakic, S. Ramakrishna, Composites Science and Technology, 63 (2003) 2223. 129.M. J. R. Cardoso; M. F. S. Lima; D. M. Lenz, Materials Research, 10(2007)425. 130.Y. C. Liu, J. Electroanal. Chem., 571(2004)255. 131.M. E. Nicho, H. Hu, Sol. Eng. Mat. & Sol. Cells., 63(2000)423. 132.M. Y. Lim, K. Anuar, H.N.M Ekramul Mahmud, The Malaysian Journal of Analytical Sciences, 11(2007)133. | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11455/10928 | - |
dc.description.abstract | 本實驗利用靜電紡絲法(Electrospinning)製備聚醯胺6(Polyamide 6;PA6)纖維,經由製程參數的實驗選定,以15 wt%聚醯胺6高分子溶液,工作電壓13 kV,流量0.1 ml/hr與工作距離18 cm的條件下,製備出51.8±10.7 nm尺寸均一的奈米級纖維。並藉此奈米纖維,以原位聚合反應,將聚苯胺與聚吡咯導電高分子成功的披覆在纖維表面,形成一聚醯胺/導電高分子複合奈米纖維膜。同時也以旋轉塗佈法製成聚醯胺6薄膜,同樣以原位聚合法製成了聚醯胺/導電高分子複合膜,並探討聚醯胺導電高分子複合薄膜與複合奈米纖維膜之間的形態與導電度的比較研究。 由於奈米纖維具有高比表面積特性,在SEM的形態分析,導電高分子複合奈米纖維直徑經原位聚合後,由於導電高分子成功的披覆在PA6奈米纖維表面,因此聚合後的纖維直徑隨著導電高分子單體濃度的增加,其直徑有逐漸增大的趨勢。在FTIR-ATR的化學結構分析,隨著導電高分子的單體濃度增加,其導電高分子的特性峰越趨明顯;在TGA的熱行為分析,5 wt%的重量損失溫度,導電高分子複合奈米纖維膜比複合膜的熱損失溫度低,50 wt%的重量損失溫度主要為PA6奈米纖維的熱裂解行為,800 ℃的殘餘重量,主要為導電高分子殘留,且導電高分子複合奈米纖維膜的殘餘重量比複合薄膜的重量較多。 最終的導電度的量測分析,導電高分子複合奈米纖維膜由於高比表面積的特性,聚苯胺與聚吡咯複合奈米纖膜維導電度約為複合薄膜導電度的分別為13~16倍與8~11倍。 | zh_TW |
dc.description.abstract | In this study, the conductive polyaniline and polypyrrole was synthesized on the surface of electrospun polyamide 6 fiber using in-situ chemical oxidation polymerization. The diameter of electrospun polyamide 6 fiber was 51.810.7 nm using the flow rate of 0.1 ml/hr, working potential of 13 kV and working distance of 18 cm. For comparison, the polyamide 6 thin film served as core was fabricated using spinning coating process. The morphology, thermal stability and conductivity of conducting polymer / polyamide composite nanofiber and film were also discussed. From the SEM results, the diameter of conducting polymer coated polyamide 6 fiber was increased as the concentration of monomers increased. The characteristic peak of conducting polymer observed by FTIR-ATR spectrum become clear as the molar ratio of conducting polymer increased. The thermal stability of conducting polymer / polyamide composite nanofiber determined by TGA was enhanced compared to that of conducting polymer / polyamide composite film. Finally, the conductivity of composite nanofiber was about 10 times improvement in magnitude compared to composite film. | en_US |
dc.description.tableofcontents | 中文摘要..................................................i Abstract.................................................ii 總目次..................................................iii 圖目次...................................................vi 表目次...................................................ix 第一章 緒論...............................................1 1-1 前言..................................................1 1-2 研究動機與目的........................................1 1-3 研究方向..............................................2 第二章 文獻回顧...........................................3 2-1 高分子奈米纖維........................................3 2-1-1 高分子..............................................3 2-1-2 合成纖維............................................5 2-1-3 奈米材料............................................7 2-1-4 奈米纖維............................................7 2-1-5 聚醯胺.............................................11 2-2 導電高分子...........................................14 2-2-1 導電高分子簡介.....................................14 2-2-2 導電高分子的導電機制...............................16 2-2-3 聚苯胺.............................................19 2-2-4 聚吡咯.............................................26 2-3 靜電紡絲.............................................29 2-3-1 靜電紡絲之緣起.....................................29 2-3-2 靜電紡絲之裝置與原理...............................29 2-3-3 影響靜電紡絲的因素.................................30 2-4 聚醯胺導電高分子材料.................................36 2-4-1 聚醯胺導電高分子薄膜...............................36 2-4-2 聚醯胺導電高分子纖維...............................37 第三章 實驗方法與步驟....................................41 3-1 實驗藥品.............................................41 3-2 實驗儀器.............................................42 3-3 實驗步驟.............................................43 3-3-1 PA6高分子溶液製備..................................43 3-3-2 PA6薄膜製備........................................43 3-3-3 PA6奈米纖維膜製備..................................44 3-3-4 PA6 / PANI導電高分子複合薄膜製備...................45 3-3-5 PA6 / PANI導電高分子複合奈米纖維膜製備.............47 3-3-6 PA6 / PPy導電高分子複合薄膜製備....................49 3-3-7 PA6 / PPy導電高分子複合奈米纖維膜製備..............51 3-4 儀器分析.............................................53 3-4-1 高分子溶液黏度量測.................................53 3-4-2 霍氏轉換紅外線光譜測定(FT-IR)....................53 3-4-3 場發射式掃描式電子顯微鏡(FT-SEM)觀察.............53 3-4-4 四點探針導電度測量儀...............................54 3-4-5 熱重損失分析.......................................54 第四章 結果與討論........................................55 4-1 PA6高分子溶液黏度探討................................55 4-2 PA6奈米纖維之製備與形態探討..........................56 4-2-1 PA6奈米纖維製備....................................56 4-2-2 PA6奈米纖維形態分析................................56 4-3 PA6 / PANI導電高分子複合薄膜.........................63 4-3-1 PA6 / PANI導電高分子複合薄膜形態分析...............63 4-3-2 PA6 / PANI導電高分子複合薄膜化學結構分析...........67 4-3-3 PA6 / PANI導電高分子複合薄膜熱重損失分析...........68 4-3-4 PA6 / PANI導電高分子複合薄膜導電度分析.............69 4-4 PA6 / PANI導電高分子複合奈米纖維膜...................71 4-4-1 PA6 / PANI導電高分子複合奈米纖維膜形態分析.........71 4-4-2 PA6 / PANI導電高分子複合奈米纖維膜化學結構分析.....74 4-4-3 PA6 / PANI導電高分子複合奈米纖維膜熱重損失分析.....75 4-4-4 PA6 / PANI導電高分子複合奈米纖維膜導電度分析.......77 4-5 PA6 / PPy導電高分子複合薄膜..........................80 4-5-1 PA6 / PPy導電高分子複合薄膜形態分析................80 4-5-2 PA6 / PPy導電高分子複合薄膜化學結構分析............82 4-5-3 PA6 / PPy導電高分子複合薄膜熱重損失分析............83 4-5-4 PA6 / PPy導電高分子複合薄膜導電度分析..............84 4-6 PA6 / PPy導電高分子複合奈米纖維膜....................86 4-6-1 PA6 / PPy導電高分子複合奈米纖維膜形態分析..........86 4-6-2 PA6 / PPy導電高分子複合奈米纖維膜化學結構分析......89 4-6-3 PA6 / PPy導電高分子複合奈米纖維膜熱重損失分析......90 4-6-4 PA6 / PPy導電高分子複合奈米纖維膜導電度分析........92 第五章 結論..............................................95 參考文獻.................................................96 | zh_TW |
dc.language.iso | en_US | zh_TW |
dc.publisher | 材料科學與工程學系所 | zh_TW |
dc.subject | Polyamide | en_US |
dc.subject | 聚苯胺 | zh_TW |
dc.subject | Polyaniline | en_US |
dc.subject | Polypyrrole | en_US |
dc.subject | Electrospinning | en_US |
dc.subject | 聚吡咯 | zh_TW |
dc.subject | 靜電紡絲 | zh_TW |
dc.title | 以原位聚合法製備導電高分子於靜電紡絲聚醯胺纖維之特性研究 | zh_TW |
dc.title | Preparation and Characterization of Electrospun Polyamide Fibers Coated by Conducting Polymer Using In-Situ Polymerization | en_US |
dc.type | Thesis and Dissertation | zh_TW |
item.openairetype | Thesis and Dissertation | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en_US | - |
item.grantfulltext | none | - |
item.fulltext | no fulltext | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | 材料科學與工程學系 |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.