Please use this identifier to cite or link to this item:
標題: Pt/Al2O3複合中空微球之微結構與氫化觸媒研究
Microstructure and Hydrogenation Catalysis of Pt/Al2O3 Hollow Spheres
作者: 范津瑋
Fan, Jin-Wei
關鍵字: Pt;Pt;Al2O3;hollow microsphere;nanocomposite structure;catalyst;Al2O3;中空微球;奈米複合結構;觸媒
出版社: 材料科學與工程學系所
引用: 1. W.J. Li, X.X. Sha, W.J. Dong, Z.C. Wang, Synthesis of stable hollow silica microspheres with mesoporous shell in nonionic W/O emulsion. Chem Commun (2002) 2434-2435. 2. X.W. Lou, L.A. Archer, Z.C. Yang, Hollow Micro-/Nanostructures: Synthesis and Applications. Adv Mater 20 (2008) 3987-4019. 3. C.Q. Hu, Z.H. Gao, X.R. Yang, Hematite hollow spheres with excellent catalytic performance for removal of carbon monoxide. Chem Lett 35 (2006) 1288-1289. 4. F. Caruso, Nanoengineering of particle surfaces. Adv Mater 13 (2001) 11. 5. M.S. Kulkarni, D.R. Mishra, K.P. Muthe, A. Singh, M. Roy, S.K. Gupta, S. Kannan, An alternative method of preparation of dosimetric grade alpha-Al2O3 : C by vacuum-assisted post-growth thermal impurification technique. Radiat Meas 39 (2005) 277-282. 6. 李秉傑, 邱宏明, 王奕凱, 非均勻系催化原理與應用. (1988). 7. Y.W. Wang, W.J. Tseng, A Novel Technique for Synthesizing Nanoshell Hollow Alumina Particles. J Am Ceram Soc 92 (2009) S32-S37. 8. 王彥文, 以植入前驅物於膠體模板方式合成單一分散中空氧化鋁暨其他無機物微球之研究. 中興大學材料科學與工程研究所碩士論文 (2008). 9. 李維特, 以植入法合成單一分散中空Al2O3暨Pt-Al2O3微球之研究. 中興大學材料科學與工程研究所碩士論文 (2009). 10. I. Tissot, J.P. Reymond, F. Lefebvre, E. Bourgeat-Lami, SiOH-functionalized polystyrene latexes. A step toward the synthesis of hollow silica nanoparticles. Chem Mater 14 (2002) 1325-1331. 11. X.L. Xu, S.A. Asher, Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals. J Am Chem Soc 126 (2004) 7940-7945. 12. J.H. Bang, K.S. Suslick, Sonochemical synthesis of nanosized hollow hematite. J Am Chem Soc 129 (2007) 2242-2243. 13. S.J. Guo, S.J. Dong, E. Wang, A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology. Chem-Eur J 14 (2008) 4689-4695. 14. F. Caruso, M. Spasova, A. Susha, M. Giersig, R.A. Caruso, Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chem Mater 13 (2001) 109-116. 15. X.M. Sun, J.F. Liu, Y.D. Li, Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem-Eur J 12 (2006) 2039-2047. 16. G.C. Chen, C.Y. Kuo, S.Y. Lu, A general process for preparation of core-shell particles of complete and smooth shells. J Am Ceram Soc 88 (2005) 277-283. 17. X.W. Lou, C.L. Yuan, L.A. Archer, Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: Cavity size tuning and functionalization. Small 3 (2007) 261-265. 18. I. Pastoriza-Santos, B. Scholer, F. Caruso, Core-shell colloids and hollow polyelectrolyte capsules based on diazoresins. Adv Funct Mater 11 (2001) 122-128. 19. Z.J. Liang, A. Susha, F. Caruso, Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof. Chem Mater 15 (2003) 3176-3183. 20. F. Caruso, R.A. Caruso, H. Mohwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282 (1998) 1111-1114. 21. X.Y. Liu, C.Y. Gao, J.C. Shen, H. Mohwald, Multilayer microcapsules as anti-cancer drug delivery vehicle: Deposition, sustained release, and in vitro bioactivity. Macromol Biosci 5 (2005) 1209-1219. 22. R.A. Caruso, A. Susha, F. Caruso, Multilayered titania, silica, and Laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres. Chem Mater 13 (2001) 400-409. 23. A. Imhof, Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells. Langmuir 17 (2001) 3579-3585. 24. E. Matijevic, Preparation and Properties of Uniform Size Colloids. Chem Mater 5 (1993) 412-426. 25. H. Yoshikawa, K. Hayashida, Y. Kozuka, A. Horiguchi, K. Awaga, S. Bandow, S. Iijima, Preparation and magnetic properties of hollow nano-spheres of cobalt and cobalt oxide: Drastic cooling-field effects on remnant magnetization of antiferromagnet. Appl Phys Lett 85 (2004) 5287-5289. 26. M. Ohnishi, Y. Kozuka, Q.L. Ye, H. Yoshikawa, K. Awaga, R. Matsuno, M. Kobayashi, A. Takahara, T. Yokoyama, S. Bandow, S. Iijima, Phase selective preparations and surface modifications of spherical hollow nanomagnets. J Mater Chem 16 (2006) 3215-3220. 27. S.W. Kim, M. Kim, W.Y. Lee, T. Hyeon, Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J Am Chem Soc 124 (2002) 7642-7643. 28. X.M. Sun, Y.D. Li, Ga2O3 and GaN semiconductor hollow spheres. Angew Chem Int Edit 43 (2004) 3827-3831. 29. X.L. Li, T.J. Lou, X.M. Sun, Y.D. Li, Highly sensitive WO3 hollow-sphere gas sensors. Inorg Chem 43 (2004) 5442-5449. 30. M.M. Titirici, M. Antonietti, A. Thomas, A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chem Mater 18 (2006) 3808-3812. 31. M. Yang, J. Ma, C.L. Zhang, Z.Z. Yang, Y.F. Lu, General synthetic route toward functional hollow spheres with double-shelled structures. Angew Chem Int Edit 44 (2005) 6727-6730. 32. Z.Z. Yang, Z.W. Niu, Y.F. Lu, Z.B. Hu, C.C. Han, Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles. Angew Chem Int Edit 42 (2003) 1943-1945. 33. W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science 26 (1968) 62-69. 34. S.B. Yoon, K. Sohn, J.Y. Kim, C.H. Shin, J.S. Yu, T. Hyeon, Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures. Adv Mater 14 (2002) 19-21. 35. G.S. Chai, S.B. Yoon, J.H. Kim, J.S. Yu, Spherical carbon capsules with hollow macroporous core and mesoporous shell structures as a highly efficient catalyst support in the direct methanol fuel cell. Chem Commun (2004) 2766-2767. 36. B. Fang, J.H. Kim, C. Lee, J.-S. Yu, Hollow Macroporous Core/Mesoporous Shell Carbon with a Tailored Structure as a Cathode Electrocatalyst Support for Proton Exchange Membrane Fuel Cells. Journal of Physical Chemistry C 112 (2008) 639-645. 37. S. Ikeda, K. Tachi, Y.H. Ng, Y. Ikoma, T. Sakata, H. Mori, T. Harada, M. Matsumura, Selective adsorption of glucose - Derived carbon precursor on amino-functionalized porous silica for fabrication of hollow carbon spheres with porous walls. Chem Mater 19 (2007) 4335-4340. 38. A.B. Fuertes, T. Valdés-Solís, M.S. Tartaj, Fabrication of Monodisperse Mesoporous Carbon Capsules Decorated with Ferrite Nanoparticles. Journal of Physical Chemistry C 112 (2008) 3648-3654. 39. P.M. Arnal, F. Schuth, F. Kleitz, A versatile method for the production of monodisperse spherical particles and hollow particles: Templating from binary core-shell structures. Chem Commun (2006) 1203-1205. 40. A.D. Smigelskas, E.O. Kirkendall, Zinc Diffusion in Alpha Brass. Trans. AIME 171 (1947) 130-142. 41. K.N. Tu, U. Gosele, Hollow nanostructures based on the Kirkendall effect: Design and stability considerations. Appl Phys Lett 86 (2005). 42. Y.D. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science 304 (2004) 711-714. 43. S. Peng, S.H. Sun, Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. Angew Chem Int Edit 46 (2007) 4155-4158. 44. J.N. Gao, X.L. Ren, D. Chen, F.Q. Tang, J. Ren, Bimetallic Ag-Pt hollow nanoparticles: Synthesis and tunable surface plasmon resonance. Scripta Mater 57 (2007) 687-690. 45. Y.G. Sun, B.T. Mayers, Y.N. Xia, Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2 (2002) 481-485. 46. Y.D. Yin, C. Erdonmez, S. Aloni, A.P. Alivisatos, Faceting of nanocrystals during chemical transformation: From solid silver spheres to hollow gold octahedra. J Am Chem Soc 128 (2006) 12671-12673. 47. Y.H. Ni, A. Tao, G.Z. Hu, X.F. Cao, X.W. Wei, Z.S. Yang, Synthesis, characterization and properties of hollow nickel phosphide nanospheres. Nanotechnology 17 (2006) 5013-5018. 48. C. Zimmermann, C. Feldmann, M. Wanner, D. Gerthsen, Nanoscale gold hollow spheres through a microemulsion approach. Small 3 (2007) 1347-1349. 49. D.H.M. Buchold, C. Feldmann, Nanoscale gamma-AIO(OH) hollow spheres: Synthesis and container-type functionality. Nano Lett 7 (2007) 3489-3492. 50. J.C. Bao, Y.Y. Liang, Z. Xu, L. Si, Facile synthesis of hollow nickel submicrometer spheres. Adv Mater 15 (2003) 1832-1835. 51. C.I. Zoldesi, A. Imhof, Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating. Adv Mater 17 (2005) 924. 52. A. Imhof, D.J. Pine, Ordered macroporous materials by emulsion templating. Nature 389 (1997) 948-951. 53. J.H. Fendler, Surfactant Vesicles as Membrane Mimetic Agents - Characterization and Utilization. Accounts Chem Res 13 (1980) 7-13. 54. C.A. Bunton, F. Nome, F.H. Quina, L.S. Romsted, Ion Binding and Reactivity at Charged Aqueous Interfaces. Accounts Chem Res 24 (1991) 357-364. 55. Y.J. Li, X.F. Li, Y.L. Li, H.B. Liu, S. Wang, H.Y. Gan, J.B. Li, N. Wang, X.R. He, D.B. Zhu, Controlled self-assembly behavior of an amphiphilic bisporphyrin-bipyridinium-palladium complex: From multibilayer vesicles to hollow capsules. Angew Chem Int Edit 45 (2006) 3639-3643. 56. H.L. Xu, W.Z. Wang, Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew Chem Int Edit 46 (2007) 1489-1492. 57. Q. Peng, Y.J. Dong, Y.D. Li, ZnSe semiconductor hollow microspheres. Angew Chem Int Edit 42 (2003) 3027-3030. 58. X. Fan, Z. Zhang, G. Li, N.A. Rowson, Attachment of solid particles to air bubbles in surfactant-free aqueous solutions. Chem Eng Sci 59 (2004) 2639-2645. 59. F. Gu, C.Z. Li, S.F. Wang, M.K. Lu, Solution-phase synthesis of spherical zinc sulfide nanostructures. Langmuir 22 (2006) 1329-1332. 60. C.Z. Wu, Y. Xie, L.Y. Lei, S.Q. Hu, C.Z. OuYang, Synthesis of new-phased VOOH hollow "dandelions" and their application in lithium-ion batteries. Adv Mater 18 (2006) 1727. 61. X.X. Li, Y.J. Xiong, Z.Q. Li, Y. Xie, Large-scale fabrication of TiO2 hierarchical hollow spheres. Inorg Chem 45 (2006) 3493-3495. 62. H.W. Hou, Q. Peng, S.Y. Zhang, Q.X. Guo, Y. Xie, A "user-friendly" chemical approach towards paramagnetic cobalt phosphide hollow structures: Preparation, characterization, and formation mechanism of Co2P hollow spheres and tubes. Eur J Inorg Chem (2005) 2625-2630. 63. K.S. Suslick, Sonochemistry. Science 247 (1990) 1439-1445. 64. D.G. Shchukin, H. Mohwald, Sonochemical nanosynthesis at the engineered interface of a cavitation microbubble. Phys Chem Chem Phys 8 (2006) 3496-3506. 65. S.F. Wang, F. Gu, M.K. Lu, Sonochemical synthesis of hollow PbS nanospheres. Langmuir 22 (2006) 398-401. 66. Y.R. Cai, H.H. Pan, X.R. Xu, Q.H. Hu, L. Li, R.K. Tang, Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres: A smart and biocompatible drug release system. Chem Mater 19 (2007) 3081-3083. 67. X.W. Lou, Y. Wang, C.L. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 18 (2006) 2325. 68. P. Tartaj, T. Gonzalez-Carreno, C.J. Serna, Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties. Adv Mater 13 (2001) 1620. 69. G.C. Bond, 胡興中編譯, 觸媒原理與應用. (1991). 70. 黃順明, 高分子載體無電鍍鎳觸媒之研究. 逢甲大學化學工程研究所碩士論文 (1992). 71. M.L. Casella, G.F. Santori, A. Moglioni, V. Vetere, J.F. Ruggera, G.M. Iglesias, O.A. Ferretti, Stereoselective hydrogenation of terpenes using platinum-based catalysts. Appl Catal a-Gen 318 (2007) 1-8. 72. P. Bour, V. Baumruk, J. Hanzlikova, Measurement and calculation of the Raman optical activity of alpha-pinene and trans-pinane. Collect Czech Chem C 62 (1997) 1384-1395.
由BET的結果發現,於室溫反應,經500℃煅燒後之Pt/Al2O3複合中空微球為以微孔洞為主之多孔結構,與同為室溫反應,經500℃煅燒所得純Al2O3中空微球結構比較,二者孔徑分布並無明顯差異,但Pt/Al2O3之比表面積值(BET=54.11 m2/g)明顯低於單純Al2O3(BET=70.39 m2/g)結構,推測是由於Pt取代多孔的Al2O3殼層所致。
比較吾人所合成的Pt/Al2O3中空觸媒,與含浸法製備的Pt/gamma-Al2O3實心觸媒(BET=9.31 m2/g)的氫化效果發現,在相同的Pt含量下,中空觸媒的轉化效果約為實心觸媒的三倍;經過氫化反應後回收的實心與中空觸媒,其上的Pt都有團聚的現象產生,但中空觸媒上的Pt團聚現象較不明顯,具有較佳的分散性,回收之後所失去的活性面積比例較低;回收後實心觸媒上的Pt粒子則團聚的非常嚴重,喪失的活性面積比例很高,就此觀察的結果預測,中空觸媒的回收再利用性是較佳的。

Microspheres are synthesized at room temperature by utilizing C2Cl4 as a solvent, AlCl3 and PtH2Cl6 as precursors, and organic microspheres as a template in this research work. The composite Pt/Al2O3 microspheres with a hollow structure have been fabricated by thermal removal of the organic template at elevated temperatures. Microstructures, morphology, and specific surface area of the hollow microsphere are examined by field emission scanning microscopy (FESEM), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) analyses. The Pt loading is determined by inductively coupled plasma (ICP). In addition, hydrogenation catalysis has been carried out for the hollow Pt/Al2O3 microspheres, and is compared with the home-made solid Pt/Al2O3 catalyst.
Evidenced by the TEM and SEM results, uniform composite hollow microspheres consisting of Al2O3 shell and partial Pt particles embedded in the shell with a size of about 5 nm are obtained by the implantation process. Some Pt aggregation has been found on the surface of Al2O3. The Pt particles tend to attach one another on the surface of Al2O3 to form aggregates upon isothermal holding at elevated temperatures. As long as the Al2O3 shell does not transform into α-Al2O3 structure, the Pt particles distribute uniformly and are stable within the shell even after calcination to 1100℃.
The BET results show that Pt/Al2O3 composite hollow microspheres and pure Al2O3 hollow microsphere possess almost identical pore diameter. However, BET surface area of the Pt/Al2O3 was significantly lower than that of pure Al2O3, presumably due to the replacement of micropores by the Pt particles in composite case.
For the hydrogenation ability, the conversion efficiency of the hollow catalyst is three times higher than that of the solid one. After the hydrogenation reaction, the recycled solid and hollow microspheres both show Pt aggregation, but the hollow one is less obvious. More importantly, the recycled hollow microspheres preserve much larger ratio of activated areas than that of the solid one, demonstrating that the hollow composite catalysts may present a better chance to become re-usable.
Appears in Collections:材料科學與工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.