Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10960
DC FieldValueLanguage
dc.contributor廖建勛zh_TW
dc.contributorLiao Chien-Shiunen_US
dc.contributor蔡毓楨zh_TW
dc.contributorYu-Chen Tsaien_US
dc.contributor.advisor吳宗明zh_TW
dc.contributor.advisorTzong-Ming Wuen_US
dc.contributor.author葉啟東zh_TW
dc.contributor.authorYeh, Chi-Tungen_US
dc.contributor.other中興大學zh_TW
dc.date2011zh_TW
dc.date.accessioned2014-06-06T06:46:42Z-
dc.date.available2014-06-06T06:46:42Z-
dc.identifier.citation[1] 吳大誠,杜仲良,高緒珊,奈米纖維,2004,13頁 [2] A. Formhals, US Patent No.1975504, 1934 [3] R. Dersch, Taiqi Liu, A. K. Schaper, A. Greiner, and J. H. Wendorff, J. Polym. Sci., Part A, Polym. Chem., 2003, 41, 545 [4] 吳偉欽等,導電性紡織品技術評估,2003, 13頁 [5] H. Shirakawa, E. J. Louis, A.G. MacDiarmid, C. K. Chiang, and A. J. Heeger, J. Chem. Soc. Chem. Comm., 1977, 578 [6] K. Kageyama, J. I. Tamazawa, and T. Aida, Science, 1999, 285, 2113 [7] Nataliya Fedorova, Behnam Pourdeyhimi, J. Appl. Polym. Sci., 2007, 104, 3434 [8] P. M. Ajayan, Q. Z. Zhou, Top. Appl. Phys., 2001, 80, 391 [9] A. Allaoui, S. Bai., H. M. Chenf, and J. B. Bai., Composites Science and Technology, 2002, 62, 1993 [10] E. Kymakis, G.A. J. Amaratunga, Appl. Phys. Lett., 2002, 80, 112 [11] H. Ago, K. Petritsch, M. S. P. Shaffer, A. H. Windle, and R. H. Friend, Adv. Mater., 1999, 11, 1281 [12] G. W. Wang, 工業材料, 2009, 272期, 62頁 [13] F. P. Burt, J. Chem. Soc., Trans., 1910, 97, 1171 [14] P. L. Kronick, H. Kaye, E. F. Chapman, S. B. Mainthia, M. M. Labes, J. Chem. Phys., 1962, 36, 2235 [15] V. V. Walatka, Jr., M. M. Labes, and J. H. Perlstein, Phys. Rev. Lett., 1973, 31,1139 [16] C. Hsu, M. M. Labes, J. Chem. Phys., 1974, 61,4640 [17] R. L. Greene, G. B. Street, "Chemistry and Physics of One-Dimensional Metals", H. J. Keller, Ed., Plenum Press, New York, N.Y.. 1977, page 167 [18] Ramakrishnan Harihanan, Ph. D. Dissertation, Chemistry Department Drexel University, 1994 [19] H. Sirringhaus, N.T., R. Friend, Science, 1998, 280, 1741 [20] H. Burroughes, D.D.C.B., A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A.B. Holmes, Nature, 1990, 347 , 539 [21] B. Wessling, Synth. Met., 1991, 1, 119 [22] J. W. P. Lin, L. P. Dudek, J. Polym. Sci., Polym. Chem. Ed., 1980, 18, 2869 [23] T. Yamamoto, K. Sanechika, and A. Yamamoto, J. Polym. Sci., Polym. Lett. Ed., 1980, 18 [24] K. Y. Jen, R. Oboodi, and R. L. Elsenbaumer, Polym. Mater. Sci. Eng., 1985, 53, 79 [25] R. L. Elsenbaumer, K.-Y. Jen, and R. Oboodi, Synth. Met., 1986, 15, 169 [26] R. Sugimoto, S. Takeda, H. B. Gu, and K. Yoshino, Chem. Express., 1986, 1, 635 [27] M. Sato, H. Morii, Macromolecules, 1991, 24, 1196 [28] 魏向辰,導電高分子與多層奈米碳管複合材料之研究,國立中央大學化學工程與材料工程研究所,2007 [29] S. Iijima, Nature, 1991, 354, 56 [30] S. Iijima, T. Ichihashi, Nature, 1993, 363, 603 [31] D. S. Bethone, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, Nature, 1993, 363, 605 [32] X. L. Xiea, Y. W. Maia, and X. P. Zhoub, Mater. Sci. Eng., 2005, 49, 89 [33] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, Science, 1998, 280, 1253 [34] M. A. Hammon, J. Chen, H. Hu, Y. Chen, M. E. Itkis, A. M. Rao, P. C. Eklund, and R. C. Haddon, Adv. Mater, 1999, 11, 834 [35] S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, and R. C. Haddon, Acc. Chem. Res., 2002, 35 , 1105 [36] Z. Spitalskya, D. Tasisb, K. Papagelisb, and C. Galiotis, Prog. Polym. Sci., 2010, 35, 357 [37] M. J. O''Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science, 2002, 3, 1379 [38] V. C. Moore, M. S. Strano, E. K. Haroz, R. H. Hauge, R. E. Smalley, Nano. Lett., 2003, 3, 1379 [39] T. Wang, X. Hu, X. Qu, S. Dong, J. Phys. Chem. B, 2006, 110, 6631 [40] A. Formhals, US Patent No.2160962, 1939 [41] A. Formhals, US Patent No.2187306, 1940 [42] A. Formhals, US Patent No.2323025, 1943 [43] A. Formhals, US Patent No.2349950, 1944 [44] C. L. Norton, US Patent No.2048651, 1936 [45] G. I. Taylor, Proc. R. Soc. London, Ser. A: Math., Phys. & Eng. Sci., 1964, 280, 383 [46] G. I. Taylor, J. Fluid Mech., 1965, 22,1 [47] G. I. Taylor, Proc. R. Soc. London, Ser. A: Math., Phys. & Eng. Sci., 1966, 291, 145 [48] G. I. Taylor, Proc. R. Soc. London, Ser. A: Math., Phys. & Eng. Sci., 1969, 313, 453 [49] D. H. Reneker, I. Chun, Nanotechnology, 1996, 7, 216 [50] H. Xu, D. Galehouse, and D.H. Reneker, Poly. Mater.: Sci. & Eng. , 2003, 88, 37 [51] Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Polymer, 2001, 42, 9955 [52] P. K. Baumgarten, J. Colloid Interface Sci., 1971, 36, 71 [53] D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 2000, 87, 4531 [54] L. Yarin, S. Koombhongse, and D. H. Reneker, J. Appl. Phys., 2001, 89, 3018 [55] L. Yarin, S. Koombhongse, and D. H. Reneker, J. Appl. Phys., 2001, 90, 4836 [56] E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowski, and G. L. Bowlin, J. Macro. Sci., Part A, 2001, 38, 1231 [57] J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Biomacromolecules, 2002, 2, 232 [58] J. P. Berry, US patent 4965110, 1990 [59] A. Theron, E. Zussman, and A. L. Yarin, Nanotechnology, 2001, 12, 384 [60] R. Dersch, T. Liu, A. K. Schaper, A. Greiner, and J. H. Wendorff,J. Poly. Sci.: Part A: Poly. Chem., 2003, 41, 545 [61] J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, and N. C. Beck Tan, Polymer, 2001, 42, 8163 [62] D. Li, Y. Wang, Y. Xia, Adv, Mater., 2004, 16, 361 [63] H. Fong, I. Chun, and D. H. Reneker, Polymer, 1999, 40, 4585 [64] C. Mit-uppatham, M. Nithitanakul, and P. Supaphol, Macromol. Chem. Phys. 2004,205, 2327 [65] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, Polymer, 2002, 43, 4403 [66] L. Li, Y. L. Hsieh, Polymer, 2005, 46, 5133 [67] P. Heikkila, and A. Harlin, Eur. Pol. J, 2008, 44, 3067 [68] X. M. Mo, C. Y. Xu, M. Kotaki, S. Ramakrishna, Biomaterials, 2004, 25, 1883 [69] M. M. Demir, I. Yilgor, E. Yilgor, B. Erman, Polymer, 2002, 43, 3303 [70] P. Supaphol, C. Mit-Uppatham, M. Nithitanakul, J. Polym. Sci. B Polym. Phys.,, 2005, 43, 3699 [71] A. K. Haghi, M. Akbari, Phys. Stat. Solid. A Appl. Mater. Sci., 2007, 204, 1830 [72] J. Tao, S. Shivkumar, Mater. Lett., 2007, 61, 2325 [73] A. Koski, K. Yim, and S. Shivkumar, Mater. Lett., 2004, 58, 493 [74] C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, and J. F. Rabolt, Macromolecules, 2004, 37, 573 [75] C. Wang, C. H. Hsu, J. H. Lin, Macromolecules, 2006, 39, 7662 [76] J. Zeng, X. Chen, X Xu, Q. Liang, X. Bian, and L. Yang, J. Appl. Polym. Sci. , 2003, 89, 1085 [77] S. J. Kim, C. K. Lee, and S. I. Kim, J. Appl. Polym. Sci., 2005, 96, 1388 [78] W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park, Polymer, 2004, 45, 2959 [79] J. M. Seo, G. K. Arumugam, S. Khan, P. A. Heiden, Macromol. Mater. Eng., 2009, 294, 35 [80] C.J. Thompson, G.G. Chase, A.L. Yarin, D.H. Reneker, Polymer, 2007, 48, 6913 [81] 林坤賢等人,化工,2005,52,22頁 [82] S. Megelski, J. S. Stephens, D. B. Chase, J.F. Rabolt, Macromolecules, 2002, 35, 8456 [83] M. Bognitzki, W. Czado, T. Frese, A. Schapor, M. Hellwig, M. Steinhart, A. Greiner, and J. H. Wendorff, Adv. Mater., 2001, 13, 70 [84] C. Wang, W. Zhang, Z. H. Huang, E. Y. Yan, and Y. H. Su, Pigment Resin Tech., 2006, 35, 278 [85] S. Y. Gu, J. Ren, Macromol Mater. Eng., 2005, 290, 1097 [86] W. Cui, X. Li, S. Zhou, J. Weng, J. Appl. Polym. Sci., 2007, 103, 3105 [87] W. Zuo, M. Zhu, W. Yang, H. Yu, Y. Chen, and Y. Zhang, Polym. Eng. Sci., 2005, 45, 704 [88] S. Kidoaki, I. K. Kwon, and T. Matsuda, J. Biomed. Mater. Res. B Appl. Biomater., 2006, 76B, 219 [89] Y. Li, Z. Huang, Lǚ Y, Eur. Polym. J., 2006, 42, 1696 [90] C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer, 1999, 40, 7397 [91] J. Macossay, A. Marruffo, R. Rincon, T. Eubanks, and A. Kuang, Polym. Adv. Tech., 2007, 18, 180 [92] H. Zhou, T. B. Green, Y. L. Joo, Polymer, 2006, 47, 7497 [93] S. Tripatanasuwan, Z. Zhong, and D. H. Reneker, Polymer, 2007, 48 ,5742 [94] P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science, 1994, 265, 1212 [95] F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, and G. Yang, Adv. Mater. , 2003, 15, 1161 [96] W. Salalha, Y. Dror, R. Khalfin, Y. Cohen, A. Yarin, and E. Zussman, Langmuir, 2003, 19, 7012 [97] H. Ye, H. Lam, N. Titchenal, Y. Gogotsi, and F. Ko, Appl. Phys. Lett., 2004, 85, 1775 [98] J. J. Ge, H. Hou, Q. Li, M. J. Graham, A. Greiner, D. H. Reneker, F. W. Harris, and S. Z. D. Cheng, J. Am. Chem. Soc., 2004, 126, 15754 [99] M. K. Shina, Y. J. Kima, S. I. Kima, S. K. Kimb, H. Leeb, G. M. Spinks, and S. J. Kim, Sens. and Act. B, 2008, 134, 122 [100] G. Mathew, J. P. Hong, J. M. Rhee, H. S. Lee, and C. Nah, Poly. Test., 2005, 24, 712 [101] R. Gonzalez, N. J. Pinto, Syn. Met., 2005, 151, 275 [102] H. Liu, C. H. Reccius, and H. G. Craighead, Appl. Phys. Lett., 2005, 87, 253106 [103] D. Li, A. Babel, S. A. Jenekhe, and Y. Xia, Adv. Mater., 2004, 16, 2062 [104] A. Bianco, C. Bertarelli, S. Frisk, J. F. Rabolt, M. C. Gallazzi, and G. Zerbi, Synthetic Metals, 2007, 157, 276 [105] A. Laforgue, L. Robitaille, Synthetic Metals, 2008, 158, 577 [106] S. Lee, G. D. Moon, and U. Jeong, J. Mater. Chem., 2009, 19, 743 [107] C. C. Kuo, C. T. Wang, and W. C. Chen, Macormol. Symp., 2009, 279, 41 [108] 曾文聰,電紡絲法製備聚三己烷基噻吩導電纖維及其特性研究,國立中興大學材料科學與工程研究所,2009 [109] 高至鈞,材料分析,2008,121頁 [110] K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, S. G. Lee, Polymer, 2003, 44, 4029 [111] S. Koombhongse, W. Liu, and D. H. Reneker, J. Polym. Sci., Part B, Polym. Phys., 2001, 39, 2598 [112] D. H. Reneker and A. L. Yarin, Polymer, 2008, 49, 2387 [113] J. Y. Park, I. H. Lee, G. N. Bea, J. Ind. and Eng. Chem., 2008, 14, 707 [114] D. Xu, H. Liu, L. Yang, and Z. Wang, Carbon, 2006, 44, 3226 [115] T. Bezrodna, G. Puchkovska, V. Styopkin, and J. Baran, Thin Solid Film, 2009, 517, 1759 [116] M. Naebe, T. Lin, M. P. Staiger, L. Dai, and X. Wang, Nanotechnology, 2008, 19, 305702 [117] H. Fong, D. H. Reneker, J. Polym. Sci., Part B, Polym. Phys., 1999, 37, 3488 [118] D. E. Motaung, G. F. Malgas, C. J. Arendse, S.E. Mavundla, and D. Knoesen, Mater. Chem. Phys., 2009, 116, 279 [119] D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han. D. G. Moon, S. Park, T. Chang, C. Chang, M. Joo, and Y. Ryu, Adv. Funct. Mater.,2005, 15, 77 [120] Y. J. Wang, Y. Pan and D. Kim, Polym. Int., 2007, 56, 381 [121] G.G. Cameron, M. D. Ingram, M. Y. Qureshi, and H. M. Gearing, Euro. Polym. J., 1989, 25, 779 [122] R. Ramani, J. Srivastava, and S. Alam, Thermo. Acta, 2010, 499, 34 [123] Y. Qin, J. Shi, W. Wu, X. Li, Z. X. Guo, and D. Zhu, J. Phys. Chem. B, 2003, 107, 12899 [124] K. Y. Jen, G. G. Miller, and R. L. Elsenbaumer, J. Chem. Soc., Chem. Commun., 1986, 1346 [125] T. A. Skothrim, Handbook of Conducting Polymers, 1986, 2, 1195zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/10960-
dc.description.abstract本研究利用靜電紡絲(electrospinning)技術,製備聚3-己烷基噻吩(P3HT)/聚乙烯氧化物(PEO)/高氯酸四正丁基胺鹽(TBAP)/少壁奈米碳管(FWCNT)之複合奈米導電纖維膜。研究中可發現藉由有機鹽TBAP 的添加,可於低黏度的溶液系統下製備出形態良好的靜電紡絲纖維產物,且隨著TBAP 濃度的提高,纖維直徑呈現明顯的下降情形。同時由於TBAP 的存在,提昇了帶電液柱的質量流量,而避免溶劑揮發所造成的針尖阻塞。此外由TEM 影像中,可發現TBAP 結晶顆粒存在於靜電紡絲纖維當中。 研究中亦藉由二次碳管表面改質技術,增加碳管表面與周圍分子間的作用力,進而提高FWCNT 於複合材料中的分散性。由TEM、XRD 與Raman 光譜的分析結果,證明經由靜電紡絲過程中液柱的拉伸行為,FWCNT可良好包覆於纖維之中。最後成功製得平均直徑為400 nm 之P3HT/PEO/TBAP/FWCNT 複合導電纖維膜。 以TGA 進行複合纖維膜的熱穩定性分析,由其10 wt%重量損失溫度(T-10)與50 wt%重量損失溫度(T-50)的變化情形,可知由於FWCNT 的存在,使得複合纖維膜熱穩定性獲得4~10 ℃的提昇;但由於碳管表面的CTAB 改質基團於280 ℃的熱裂解,造成300 ℃以上之TGA 曲線出現偏移。此外藉由FWCNT 的添加與飽和碘蒸氣的摻雜處理,使導電纖維膜的導電度可明顯提升108~109 倍。zh_TW
dc.description.abstractConducting composite nanofibers fabricated from the solution of poly 3-hexylthiophene (P3HT), polyethylene oxide (PEO), tetrabutylammonium perchlorate (TBAP) and few-walled carbon nanotubes (FWCNTs) using the electrospinning (ES) technology were demonstrated in this study. The addition of TBAP into polymer could reduce the viscosity for fabricating the nanofibers in ES process and avoid the tip clogging due to the enhancement of mass flow rate of jet. The diameter of nanofiber was decreased with ncreasing the TBAP concentration. From the TEM images, the crystalline TBAP particle was observed inside conductive composite nanofibers. Chemical modification of carbon nanotubes was applied to improve the dispersion of FWCNTs because of the possible interaction between the nanotubes and surrounding molecules. Investigations using TEM、XRD and Raman spectrum demonstrate that the modified FWCNTs were well wrapped in the nanofibers due to the drawing of jet during the ES process. Average diameter of 400 nm of composite nanofiber were fabricated with reasonable adjustment of ES process parameters. The change of 10 wt% weight loss(T-10)and 50 wt% weight loss (T-50)temperatures obtained by TGA measurement indicated that the thermal stability of composite nanofibers was enhanced about 4 to 10 ℃ due to the presence of high thermal stable FWCNTs. But the thermal stability of composite nanofibers slightly shifted to lower temperature, which probably owing to the degradation of surfactant CTAB on the surface of FWCNTs. And the conductivity of nanofibers was increased by 8 to 9 orders of magnitude via the treatment of iodine doping and addition of FWCNT.zh_TW
dc.description.tableofcontents中文摘要 i Abstract ii 總目次 iii 圖目次 v 表目次 ix 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 研究方向 3 第二章 文獻回顧 5 2-1 導電高分子 5 2-2 聚噻吩 8 2-3 奈米碳管 11 2-4 靜電紡絲 14 2-4-1 靜電紡絲起源 14 2-4-2 靜電紡絲原理 14 2-4-3 影響纖維形態的因素 24 2-4-3-1 溶液性質 24 2-4-3-2 製程參數 33 2-4-3-3 環境影響 39 2-4-4 靜電紡絲法製備高分子/奈米碳管複合纖維 42 2-4-5 以靜電紡絲法製備聚噻吩導電纖維 46 第三章 實驗方法與步驟 50 3-1 實驗材料 50 3-2 實驗儀器 51 3-3 實驗步驟 53 3-3-1 P3HT/PEO高分子溶液製備 53 3-3-2 TBAP/P3HT/PEO高分子溶液製備 53 3-3-3 奈米碳管表面改質 53 3-3-4 精表面改質處理奈米碳管之官能基鑑定 54 3-3-5 FWCNT/高分子混合溶液製備 54 3-3-6 溶液黏度量測 55 3-3-7 靜電紡絲製程 55 3-3-8 纖維直徑量測計算 56 3-3-9 纖維膜導電度量測 56 3-3-10 實驗流程圖 56 3-4 實驗儀器分析 57 第四章 結果與討論 64 4-1 靜電紡絲纖維製備 64 4-1-1 溶液黏度對P3HT/PEO系統纖維形態探討 64 4-1-2 操作電壓、工作距離、流量對P3HT/PEO系統纖維形態探討 68 4-1-3 TBAP對靜電紡絲纖維型態影響 75 4-1-4操作電壓、工作距離、流量對P3HT/PEO/TBAP靜電紡絲系統影響 76 4-1-5 P3HT/PEO/TBAP纖維內部形態 77 4-2 P3HT/PEO/TBAP/FWCNT複合纖維製備 87 4-2-1 P3HT/PEO/TBAP/FWCNT複合纖維形態探討 88 4-3 P3HT/PEO/TBAP/FWCNT複合導電纖維膜之特性分析 96 4-3-1 熱穩定性分析 96 4-3-2 導電度分析 100 第五章 結論 103 參考文獻 104zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料科學與工程學系所zh_TW
dc.subjectElectrospinningen_US
dc.subject聚三己烷基噻吩zh_TW
dc.subjectPoly(3-hexyl-thiophene)en_US
dc.subjectFew-walled nanotubeen_US
dc.subject少壁奈米碳管zh_TW
dc.title以靜電紡絲法製備聚三己烷基噻吩/少壁奈米碳管複合奈米纖維及其特性分析zh_TW
dc.titleFabrication and Characterization of Poly(3-hexyl- thiophene)/Few-walled Nanotube Composite Nanofibers via Electrospinningen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
item.grantfulltextnone-
item.fulltextno fulltext-
item.cerifentitytypePublications-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.