Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/10960
標題: | 以靜電紡絲法製備聚三己烷基噻吩/少壁奈米碳管複合奈米纖維及其特性分析 Fabrication and Characterization of Poly(3-hexyl- thiophene)/Few-walled Nanotube Composite Nanofibers via Electrospinning |
作者: | 葉啟東 Yeh, Chi-Tung |
關鍵字: | Electrospinning;聚三己烷基噻吩;Poly(3-hexyl-thiophene);Few-walled nanotube;少壁奈米碳管 | 出版社: | 材料科學與工程學系所 | 引用: | [1] 吳大誠,杜仲良,高緒珊,奈米纖維,2004,13頁 [2] A. Formhals, US Patent No.1975504, 1934 [3] R. Dersch, Taiqi Liu, A. K. Schaper, A. Greiner, and J. H. Wendorff, J. Polym. Sci., Part A, Polym. Chem., 2003, 41, 545 [4] 吳偉欽等,導電性紡織品技術評估,2003, 13頁 [5] H. Shirakawa, E. J. Louis, A.G. MacDiarmid, C. K. Chiang, and A. J. Heeger, J. Chem. Soc. Chem. Comm., 1977, 578 [6] K. Kageyama, J. I. Tamazawa, and T. Aida, Science, 1999, 285, 2113 [7] Nataliya Fedorova, Behnam Pourdeyhimi, J. Appl. Polym. Sci., 2007, 104, 3434 [8] P. M. Ajayan, Q. Z. Zhou, Top. Appl. Phys., 2001, 80, 391 [9] A. Allaoui, S. Bai., H. M. Chenf, and J. B. Bai., Composites Science and Technology, 2002, 62, 1993 [10] E. Kymakis, G.A. J. Amaratunga, Appl. Phys. Lett., 2002, 80, 112 [11] H. Ago, K. Petritsch, M. S. P. Shaffer, A. H. Windle, and R. H. Friend, Adv. Mater., 1999, 11, 1281 [12] G. W. Wang, 工業材料, 2009, 272期, 62頁 [13] F. P. Burt, J. Chem. Soc., Trans., 1910, 97, 1171 [14] P. L. Kronick, H. Kaye, E. F. Chapman, S. B. Mainthia, M. M. Labes, J. Chem. Phys., 1962, 36, 2235 [15] V. V. Walatka, Jr., M. M. Labes, and J. H. Perlstein, Phys. Rev. Lett., 1973, 31,1139 [16] C. Hsu, M. M. Labes, J. Chem. Phys., 1974, 61,4640 [17] R. L. Greene, G. B. Street, "Chemistry and Physics of One-Dimensional Metals", H. J. Keller, Ed., Plenum Press, New York, N.Y.. 1977, page 167 [18] Ramakrishnan Harihanan, Ph. D. Dissertation, Chemistry Department Drexel University, 1994 [19] H. Sirringhaus, N.T., R. Friend, Science, 1998, 280, 1741 [20] H. Burroughes, D.D.C.B., A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A.B. Holmes, Nature, 1990, 347 , 539 [21] B. Wessling, Synth. Met., 1991, 1, 119 [22] J. W. P. Lin, L. P. Dudek, J. Polym. Sci., Polym. Chem. Ed., 1980, 18, 2869 [23] T. Yamamoto, K. Sanechika, and A. Yamamoto, J. Polym. Sci., Polym. Lett. Ed., 1980, 18 [24] K. Y. Jen, R. Oboodi, and R. L. Elsenbaumer, Polym. Mater. Sci. Eng., 1985, 53, 79 [25] R. L. Elsenbaumer, K.-Y. Jen, and R. Oboodi, Synth. Met., 1986, 15, 169 [26] R. Sugimoto, S. Takeda, H. B. Gu, and K. Yoshino, Chem. Express., 1986, 1, 635 [27] M. Sato, H. Morii, Macromolecules, 1991, 24, 1196 [28] 魏向辰,導電高分子與多層奈米碳管複合材料之研究,國立中央大學化學工程與材料工程研究所,2007 [29] S. Iijima, Nature, 1991, 354, 56 [30] S. Iijima, T. Ichihashi, Nature, 1993, 363, 603 [31] D. S. Bethone, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, Nature, 1993, 363, 605 [32] X. L. Xiea, Y. W. Maia, and X. P. Zhoub, Mater. Sci. Eng., 2005, 49, 89 [33] J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, Science, 1998, 280, 1253 [34] M. A. Hammon, J. Chen, H. Hu, Y. Chen, M. E. Itkis, A. M. Rao, P. C. Eklund, and R. C. Haddon, Adv. Mater, 1999, 11, 834 [35] S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, and R. C. Haddon, Acc. Chem. Res., 2002, 35 , 1105 [36] Z. Spitalskya, D. Tasisb, K. Papagelisb, and C. Galiotis, Prog. Polym. Sci., 2010, 35, 357 [37] M. J. O''Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science, 2002, 3, 1379 [38] V. C. Moore, M. S. Strano, E. K. Haroz, R. H. Hauge, R. E. Smalley, Nano. Lett., 2003, 3, 1379 [39] T. Wang, X. Hu, X. Qu, S. Dong, J. Phys. Chem. B, 2006, 110, 6631 [40] A. Formhals, US Patent No.2160962, 1939 [41] A. Formhals, US Patent No.2187306, 1940 [42] A. Formhals, US Patent No.2323025, 1943 [43] A. Formhals, US Patent No.2349950, 1944 [44] C. L. Norton, US Patent No.2048651, 1936 [45] G. I. Taylor, Proc. R. Soc. London, Ser. A: Math., Phys. & Eng. Sci., 1964, 280, 383 [46] G. I. Taylor, J. Fluid Mech., 1965, 22,1 [47] G. I. Taylor, Proc. R. Soc. London, Ser. A: Math., Phys. & Eng. Sci., 1966, 291, 145 [48] G. I. Taylor, Proc. R. Soc. London, Ser. A: Math., Phys. & Eng. Sci., 1969, 313, 453 [49] D. H. Reneker, I. Chun, Nanotechnology, 1996, 7, 216 [50] H. Xu, D. Galehouse, and D.H. Reneker, Poly. Mater.: Sci. & Eng. , 2003, 88, 37 [51] Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Polymer, 2001, 42, 9955 [52] P. K. Baumgarten, J. Colloid Interface Sci., 1971, 36, 71 [53] D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 2000, 87, 4531 [54] L. Yarin, S. Koombhongse, and D. H. Reneker, J. Appl. Phys., 2001, 89, 3018 [55] L. Yarin, S. Koombhongse, and D. H. Reneker, J. Appl. Phys., 2001, 90, 4836 [56] E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowski, and G. L. Bowlin, J. Macro. Sci., Part A, 2001, 38, 1231 [57] J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, Biomacromolecules, 2002, 2, 232 [58] J. P. Berry, US patent 4965110, 1990 [59] A. Theron, E. Zussman, and A. L. Yarin, Nanotechnology, 2001, 12, 384 [60] R. Dersch, T. Liu, A. K. Schaper, A. Greiner, and J. H. Wendorff,J. Poly. Sci.: Part A: Poly. Chem., 2003, 41, 545 [61] J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, and N. C. Beck Tan, Polymer, 2001, 42, 8163 [62] D. Li, Y. Wang, Y. Xia, Adv, Mater., 2004, 16, 361 [63] H. Fong, I. Chun, and D. H. Reneker, Polymer, 1999, 40, 4585 [64] C. Mit-uppatham, M. Nithitanakul, and P. Supaphol, Macromol. Chem. Phys. 2004,205, 2327 [65] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, Polymer, 2002, 43, 4403 [66] L. Li, Y. L. Hsieh, Polymer, 2005, 46, 5133 [67] P. Heikkila, and A. Harlin, Eur. Pol. J, 2008, 44, 3067 [68] X. M. Mo, C. Y. Xu, M. Kotaki, S. Ramakrishna, Biomaterials, 2004, 25, 1883 [69] M. M. Demir, I. Yilgor, E. Yilgor, B. Erman, Polymer, 2002, 43, 3303 [70] P. Supaphol, C. Mit-Uppatham, M. Nithitanakul, J. Polym. Sci. B Polym. Phys.,, 2005, 43, 3699 [71] A. K. Haghi, M. Akbari, Phys. Stat. Solid. A Appl. Mater. Sci., 2007, 204, 1830 [72] J. Tao, S. Shivkumar, Mater. Lett., 2007, 61, 2325 [73] A. Koski, K. Yim, and S. Shivkumar, Mater. Lett., 2004, 58, 493 [74] C. L. Casper, J. S. Stephens, N. G. Tassi, D. B. Chase, and J. F. Rabolt, Macromolecules, 2004, 37, 573 [75] C. Wang, C. H. Hsu, J. H. Lin, Macromolecules, 2006, 39, 7662 [76] J. Zeng, X. Chen, X Xu, Q. Liang, X. Bian, and L. Yang, J. Appl. Polym. Sci. , 2003, 89, 1085 [77] S. J. Kim, C. K. Lee, and S. I. Kim, J. Appl. Polym. Sci., 2005, 96, 1388 [78] W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park, Polymer, 2004, 45, 2959 [79] J. M. Seo, G. K. Arumugam, S. Khan, P. A. Heiden, Macromol. Mater. Eng., 2009, 294, 35 [80] C.J. Thompson, G.G. Chase, A.L. Yarin, D.H. Reneker, Polymer, 2007, 48, 6913 [81] 林坤賢等人,化工,2005,52,22頁 [82] S. Megelski, J. S. Stephens, D. B. Chase, J.F. Rabolt, Macromolecules, 2002, 35, 8456 [83] M. Bognitzki, W. Czado, T. Frese, A. Schapor, M. Hellwig, M. Steinhart, A. Greiner, and J. H. Wendorff, Adv. Mater., 2001, 13, 70 [84] C. Wang, W. Zhang, Z. H. Huang, E. Y. Yan, and Y. H. Su, Pigment Resin Tech., 2006, 35, 278 [85] S. Y. Gu, J. Ren, Macromol Mater. Eng., 2005, 290, 1097 [86] W. Cui, X. Li, S. Zhou, J. Weng, J. Appl. Polym. Sci., 2007, 103, 3105 [87] W. Zuo, M. Zhu, W. Yang, H. Yu, Y. Chen, and Y. Zhang, Polym. Eng. Sci., 2005, 45, 704 [88] S. Kidoaki, I. K. Kwon, and T. Matsuda, J. Biomed. Mater. Res. B Appl. Biomater., 2006, 76B, 219 [89] Y. Li, Z. Huang, Lǚ Y, Eur. Polym. J., 2006, 42, 1696 [90] C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer, 1999, 40, 7397 [91] J. Macossay, A. Marruffo, R. Rincon, T. Eubanks, and A. Kuang, Polym. Adv. Tech., 2007, 18, 180 [92] H. Zhou, T. B. Green, Y. L. Joo, Polymer, 2006, 47, 7497 [93] S. Tripatanasuwan, Z. Zhong, and D. H. Reneker, Polymer, 2007, 48 ,5742 [94] P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science, 1994, 265, 1212 [95] F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, and G. Yang, Adv. Mater. , 2003, 15, 1161 [96] W. Salalha, Y. Dror, R. Khalfin, Y. Cohen, A. Yarin, and E. Zussman, Langmuir, 2003, 19, 7012 [97] H. Ye, H. Lam, N. Titchenal, Y. Gogotsi, and F. Ko, Appl. Phys. Lett., 2004, 85, 1775 [98] J. J. Ge, H. Hou, Q. Li, M. J. Graham, A. Greiner, D. H. Reneker, F. W. Harris, and S. Z. D. Cheng, J. Am. Chem. Soc., 2004, 126, 15754 [99] M. K. Shina, Y. J. Kima, S. I. Kima, S. K. Kimb, H. Leeb, G. M. Spinks, and S. J. Kim, Sens. and Act. B, 2008, 134, 122 [100] G. Mathew, J. P. Hong, J. M. Rhee, H. S. Lee, and C. Nah, Poly. Test., 2005, 24, 712 [101] R. Gonzalez, N. J. Pinto, Syn. Met., 2005, 151, 275 [102] H. Liu, C. H. Reccius, and H. G. Craighead, Appl. Phys. Lett., 2005, 87, 253106 [103] D. Li, A. Babel, S. A. Jenekhe, and Y. Xia, Adv. Mater., 2004, 16, 2062 [104] A. Bianco, C. Bertarelli, S. Frisk, J. F. Rabolt, M. C. Gallazzi, and G. Zerbi, Synthetic Metals, 2007, 157, 276 [105] A. Laforgue, L. Robitaille, Synthetic Metals, 2008, 158, 577 [106] S. Lee, G. D. Moon, and U. Jeong, J. Mater. Chem., 2009, 19, 743 [107] C. C. Kuo, C. T. Wang, and W. C. Chen, Macormol. Symp., 2009, 279, 41 [108] 曾文聰,電紡絲法製備聚三己烷基噻吩導電纖維及其特性研究,國立中興大學材料科學與工程研究所,2009 [109] 高至鈞,材料分析,2008,121頁 [110] K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, S. G. Lee, Polymer, 2003, 44, 4029 [111] S. Koombhongse, W. Liu, and D. H. Reneker, J. Polym. Sci., Part B, Polym. Phys., 2001, 39, 2598 [112] D. H. Reneker and A. L. Yarin, Polymer, 2008, 49, 2387 [113] J. Y. Park, I. H. Lee, G. N. Bea, J. Ind. and Eng. Chem., 2008, 14, 707 [114] D. Xu, H. Liu, L. Yang, and Z. Wang, Carbon, 2006, 44, 3226 [115] T. Bezrodna, G. Puchkovska, V. Styopkin, and J. Baran, Thin Solid Film, 2009, 517, 1759 [116] M. Naebe, T. Lin, M. P. Staiger, L. Dai, and X. Wang, Nanotechnology, 2008, 19, 305702 [117] H. Fong, D. H. Reneker, J. Polym. Sci., Part B, Polym. Phys., 1999, 37, 3488 [118] D. E. Motaung, G. F. Malgas, C. J. Arendse, S.E. Mavundla, and D. Knoesen, Mater. Chem. Phys., 2009, 116, 279 [119] D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han. D. G. Moon, S. Park, T. Chang, C. Chang, M. Joo, and Y. Ryu, Adv. Funct. Mater.,2005, 15, 77 [120] Y. J. Wang, Y. Pan and D. Kim, Polym. Int., 2007, 56, 381 [121] G.G. Cameron, M. D. Ingram, M. Y. Qureshi, and H. M. Gearing, Euro. Polym. J., 1989, 25, 779 [122] R. Ramani, J. Srivastava, and S. Alam, Thermo. Acta, 2010, 499, 34 [123] Y. Qin, J. Shi, W. Wu, X. Li, Z. X. Guo, and D. Zhu, J. Phys. Chem. B, 2003, 107, 12899 [124] K. Y. Jen, G. G. Miller, and R. L. Elsenbaumer, J. Chem. Soc., Chem. Commun., 1986, 1346 [125] T. A. Skothrim, Handbook of Conducting Polymers, 1986, 2, 1195 | 摘要: | 本研究利用靜電紡絲(electrospinning)技術,製備聚3-己烷基噻吩(P3HT)/聚乙烯氧化物(PEO)/高氯酸四正丁基胺鹽(TBAP)/少壁奈米碳管(FWCNT)之複合奈米導電纖維膜。研究中可發現藉由有機鹽TBAP 的添加,可於低黏度的溶液系統下製備出形態良好的靜電紡絲纖維產物,且隨著TBAP 濃度的提高,纖維直徑呈現明顯的下降情形。同時由於TBAP 的存在,提昇了帶電液柱的質量流量,而避免溶劑揮發所造成的針尖阻塞。此外由TEM 影像中,可發現TBAP 結晶顆粒存在於靜電紡絲纖維當中。 研究中亦藉由二次碳管表面改質技術,增加碳管表面與周圍分子間的作用力,進而提高FWCNT 於複合材料中的分散性。由TEM、XRD 與Raman 光譜的分析結果,證明經由靜電紡絲過程中液柱的拉伸行為,FWCNT可良好包覆於纖維之中。最後成功製得平均直徑為400 nm 之P3HT/PEO/TBAP/FWCNT 複合導電纖維膜。 以TGA 進行複合纖維膜的熱穩定性分析,由其10 wt%重量損失溫度(T-10)與50 wt%重量損失溫度(T-50)的變化情形,可知由於FWCNT 的存在,使得複合纖維膜熱穩定性獲得4~10 ℃的提昇;但由於碳管表面的CTAB 改質基團於280 ℃的熱裂解,造成300 ℃以上之TGA 曲線出現偏移。此外藉由FWCNT 的添加與飽和碘蒸氣的摻雜處理,使導電纖維膜的導電度可明顯提升108~109 倍。 Conducting composite nanofibers fabricated from the solution of poly 3-hexylthiophene (P3HT), polyethylene oxide (PEO), tetrabutylammonium perchlorate (TBAP) and few-walled carbon nanotubes (FWCNTs) using the electrospinning (ES) technology were demonstrated in this study. The addition of TBAP into polymer could reduce the viscosity for fabricating the nanofibers in ES process and avoid the tip clogging due to the enhancement of mass flow rate of jet. The diameter of nanofiber was decreased with ncreasing the TBAP concentration. From the TEM images, the crystalline TBAP particle was observed inside conductive composite nanofibers. Chemical modification of carbon nanotubes was applied to improve the dispersion of FWCNTs because of the possible interaction between the nanotubes and surrounding molecules. Investigations using TEM、XRD and Raman spectrum demonstrate that the modified FWCNTs were well wrapped in the nanofibers due to the drawing of jet during the ES process. Average diameter of 400 nm of composite nanofiber were fabricated with reasonable adjustment of ES process parameters. The change of 10 wt% weight loss(T-10)and 50 wt% weight loss (T-50)temperatures obtained by TGA measurement indicated that the thermal stability of composite nanofibers was enhanced about 4 to 10 ℃ due to the presence of high thermal stable FWCNTs. But the thermal stability of composite nanofibers slightly shifted to lower temperature, which probably owing to the degradation of surfactant CTAB on the surface of FWCNTs. And the conductivity of nanofibers was increased by 8 to 9 orders of magnitude via the treatment of iodine doping and addition of FWCNT. |
URI: | http://hdl.handle.net/11455/10960 |
Appears in Collections: | 材料科學與工程學系 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.