Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/10974
標題: 添加不同助銲劑對鉻基硬面合金之特性研究
Influence of Various Fluxes on the Chracteristics of Cr-based Hardfacing Alloy
作者: 施舜寶
Shih, Shun-Bao
關鍵字: 硬面銲覆;Hardfacing;助銲劑;裂紋;flux;crack
出版社: 材料科學與工程學系所
引用: 第六章 參考文獻 【1】 劉家浚著,材料磨損原理及其耐磨性,清華大學出版社,第246-247頁,1993年。 【2】 劉俊傑譯,金屬的表面處理與加工,徐氏基金會出版,第361-373頁,民國81年。 【3】 林福嚴、曲敬信、陳華輝編著,磨損理論與抗磨技術,科學出版社,1993年。 【4】 C. A. Mayer, “How to select hardsurfacing materials,” Welding Design & Fabrication, Vol.82, pp.61-67,1982. 【5】 R. Menon, “New developments in hardfacing alloys,” Welding Journal, Vol. , pp.43-46, 1996. 【6】 K. Gurumoorthy, “Microstructural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy,” Materials Science and Engineering A, Vol.456, pp.11-19, 2007. 【7】 M. Zucchetti, “Low-activation properties of novel Cr-based materials for fusion reactors,” Journal of Nuclear Materials, pp.1486-1490, 1996. 【8】 Y. Matsubara, N. Sasaguri, K. Shimizu, S. and K. Yu, “Solidification and abrasion wear of white cast irons alloyed with 20% carbide forming elements,” Wear, Vol.250, pp.502-510, 2001. 【9】 H. Q. Wu, “Solidification of multi-alloyed white cast iron: type and morphology of carbides, ” Transactions of the American Foundrymen''s Society, Vol.104, pp.103-108, 1996. 【10】 H. K. Baik, “The influence of niobium on the solidification structure of Fe-Cr-C alloys,” Transactions of the American Foundrymen''s Society, Vol.96, pp.405-412, 1988. 【11】 Y. Matsubara, K. Ogi, and K. Matsuda, “Eutectic solidification of high chromium cast iron-eutectic structures and their quantitative analysis, ” Transactions of the American Foundrymen''s Society, Vol.89, pp.183-196, 1982. 【12】 C. M. Lin, “Microstructural evolution of hypoeutectic, near-eutectic, and hypereutectic high-carbon Cr-based hard-facing alloys, ” Metallurgical and Materials Transactions A, Vol.40A, pp.1031-1038, 2009. 【13】 C.W. Kuo, “Microstructure and wear characteristics of hypoeutectic, eutectic, and hypereutectic (Cr,Fe)23C6 carbides in hardfacing alloys , ” Mater. Trans. Vol.48, pp. 2324–28, 2007. 【14】 C. Fan, M. C. Chen, C. M. Chang, and W. Wu, “Microstructure change caused by (Cr,Fe)23C6 carbides in high chromium Fe–Cr–C hardfacing alloys, ” Surface &Coatings Technology, Vol. 201, pp. 918-912, 2006. 【15】 S. Chatterjee, “Weld procedural effect on the performance of iron based hardfacing deposits on cast iron substrate,” Journal of Materials Processing Technology, Vol.173, pp.61-69, 2006. 【16】 Q. X. Yang, “Mechanism of cracking resistance of hardfacing specimens of steel 5CrNiMo improved by rare earth oxide,” Journal of Earths, Vol.24, pp.471-478, 2006. 【17】 D. S. Wang, E. J. Liang, M. J. Chao, and B.Yuan, “Investigation on the microstructure and cracking susceptibility of laser-clad V2O5 /NiCrBSiC alloy coatings,” Surface &Coatings Technology, Vol. 202, pp. 1371-1378, 2008. 【18】 M. Dumovic, “Repair and maintenance procedures for heavy machinery components, ” Welding Innovation, Vol. XX, No. 1, pp. 1-5, 2003. 【19】 L. Lin, and K. Han, “Optimization of surface properties by flame spray coating and boriding, ” Surface & Coatings Technology, vol.106, pp.100-105, 1998. 【20】 M. Li, A. Kar, V. Desai, and A. Khanna, “High-temperature oxidation resistance improvement of titanium using laser surface alloying,” Journal of Materials Science, vol.30, pp.5093-5098, 1995. 【21】 H. Wang, W. Xia, and Y. Jin, “A study on abrasive resistance of Ni-based coatings with a WC hard phase,” Wear, vol.195, pp.47-52, 1996. 【22】 H. Berns, and S. Koch, “Influence of abrasive particles on wear mechanism and wear resistance in sliding abrasion tests at elevated temperatures,” Wear, Vol.233-235, pp.424-430, 1999. 【23】 S. Kou, Welding Metallurgy, ed. 2, John Wiley & sons, Inc., U.S.A, pp. 3-4, 1987. 【24】 S. Kou, Welding Metallurgy, ed. 2, John Wiley & sons, Inc., U.S.A, pp. 3, 1987. 【25】 C. M. Chang, C. M. Lin, C. C. Hsieh, J. H. Chen, and W. Wu, “Micro-structural characteristics of Fe–40 wt%Cr–xC hardfacing alloys with [1.0–4.0 wt%] carbon content,” Journal of Alloys and Compounds, Vol.487, pp. 83-89, 2009. 【26】 A. Durgutlu, “Experimental investigation of the effect of hydrogen in argon as a shielding gas on TIG welding of austenitic stainless steel, ” Materials & Design, Vol. 25, pp. 19-23, 2004. 【27】 S. Kou, Welding Metallurgy, ed. 2, John Wiley & sons, Inc., U.S.A, pp. 13-14, 1987. 【28】 L.-E. Svensson, B. Gretoft, and B. Ulander, “Fe-Cr-C hardfacing alloys for high temperature applications, ” Journal of Materials Science, Vol. 21, pp. 1015-1019, 1986. 【29】 H. Ocken, “Reducing the cobalt inventory in light water reactors, ” Nuclear Tech, Vol.68, pp. 18-28, 1985. 【30】 M.H. Korkut, O. Yilmaz,, S. Buytoz, “Effect of aging on the microstructure and toughness of the interface zone of a gas tungsten arc (GTA) synthesized Fe–Cr–Si–Mo–C coated low carbon steel, ” Surface & Coatings Technology, Vol. 157, pp.5-13, 2002. 【31】 H. Ocken, “The galling wear resistance of new iron-base hardfacing alloys: a comparison with established cobalt- and nickel-base alloys,” Surface & Coatings Technology, Vol. 76, pp.456-461, 1995. 【32】 E. N. Gregory and M. Bartle, “Welding Surfacing and Hardfacing,” The welding institute, 1980. 【33】 P. L. Hurricks, “Some aspects of the metallurgy and wear resistance of surface coatings,” Wear, Vol. 22, pp. 291-320, 1972. 【34】 S. O. Yılmaz, “Wear behavior of gas tungsten arc deposited FeCr, FeCrC, and WC coatings on AISI 1018 steel,” Surface & Coatings Technology, Vol. 201, pp. 1568-1575, 2006. 【35】 D. J. Kotecki, and J. S. Ogborn, “Abrasion Resistance of Iron-Based Hardfacing Alloys,” Welding Research Supplement, Vol.74, pp.269-279, 1995. 【36】 S. Buytoz, “Microstructural properties of M7C3 eutectic carbides in a Fe–Cr–C alloy,” Materials Letters, Vol.60, pp.605-608, 2006. 【37】 L. Lu, H. Soda, and A. Mclean, “Microstructure and mechanical properties of Fe-Cr-C eutectic composites, ” Materials Science and Engineering A, Vol. 347, pp. 214-222, 2003. 【38】 S. G. Sapate, and A. V. Rama Rao, “Effect of carbide volume fraction on erosive wear behavior of hardfacing cast irons,” Wear, Vol.256, pp.774-786, 2004. 【39】 S. Atamert, and H. K. D. H. Bhadeshia, “Microstructure and stability of Fe-Cr-C hardfacing alloys, ” Materials Science and Engineering A, Vol.130, pp.101-111, 1990. 【40】 S. Chatterjee, and T. K. Pal, “Wear behavior of hardfacing deposits on cast iron,” Wear, Vol.255, pp.417-425, 2003. 【41】 Kejžar and J. Grum, “Hardfacing of wear-resistant deposits by mag welding with a flux-cored wire having graphite in its filling,” Materials and Manufacturing Processes, Vol.20, pp.961-976, 2005. 【42】 J. Asensio, J. A. Pero-Sanz, and J. I. Verdeja, “Microstructure selection criteria for cast irons with more than 10 wt.% chromium for wear applications,” Materials Characterization, Vol. 49, pp. 83-93, 2003. 【43】 G. V. Raynor and V. G.. Rivlin, Phase equilibria in iron ternary alloys, The insititute of metals, the math press, UK, p. 299-327, 1988. 【44】 Y. Matsubara, N. Sasaguri, K. Shimizu, S. and K. Yu, “Solidification and abrasion wear of white cast irons alloyed with 20% carbide forming elements,” Wear, Vol.250, pp.502-510, 2001. 【45】 Y. Matsubara, K. Ogi, and K. Matsuda, “Eutectic solidification of high chromium cast iron-eutectic structures and their quantitative analysis,” Transactions of the American Foundrymen''s Society, Vol.89, pp.183-196, 1982. 【46】 P. Marshall, “Austenitic Stainless Steels Microstructure and Mechanical Properties, ” New York, Elsevier Applied Science, pp.1-144, 1984. 【47】L. B. Li, “Development of flux in electronic conductry,” China Academic Journal Electronic Publishing House. No. 8, pp. 62-65, 2004. 【48】 S. Gao, “Progress in reaearch of flux compositions,” China Academic Journal Electronic Publishing House. No. 9, pp. 59-62, 2004. 【49】 Y. W. Shi, Y. P. Lei, Z. D. Xia, F. Guo, and X. Y. Li, “Design and prospect of lead-free solder paste,” Electronic Components and Materials, Vol. 27, pp. 31-34, 2008. 【50】 J. H. Kim , H. S. Hong , and S. J. Kim, “Effect of boron addition on the cavitation erosion resistance of Fe-based hardfacing alloy” Material letters, Vol. 61, pp. 1235-1237, 2007. 【51】 李海波、余曉艷,“硼砂在珠寶首飾加工中的應用”,寶石和寶石學雜誌,第6卷,第4期,第39-41頁,民國93年。 【52】 朱邊,“談談螢石資源的利用與保護”, China Academic Journal Electronic Publishing House,第二期,第46-47頁,民國92年。 【53】 梁小平、金楊、王雨、段紅玲,“RH 精煉渣高熔點相作用濃度對黏渣的影響”, The Chinese Journal of Process Engineering,第9卷,第2期,第324-328頁,民國98年。 【54】 陳耀峰、王雨,“精煉渣組成對鋼-渣硫分配比的影響”, 特殊鋼,第28卷,第4期,第36-38頁,民國96年。 【55】 趙保國、毛福來、湯潛、王立軍,“LF精煉造渣工藝研究”, Science & Technology of Baotou Steel (Group) Corporation,第29卷,第24-27頁,民國92年。 【56】 C. R. Heiple, and J. R. Roper, “Mechanism for minor element effect on GTA fusion zone geometry,” Welding research supplement, Vol. 61, No. 4, pp. 97-102, 1982. 【57】 C. R. Heiple, J. R. Roper, R. T. Stagner, and R. J. Aden, “Surface active element effects on the shape of GTA, laser, and electron beam welds,” Welding research supplement, Vol. 62, No. 3, pp. 72-77, 1982. 【58】Paulo J. Modenesi, “TIG welding with single-component fluxes, ” Journal of Materials Processing Technology, Vol. 99, pp. 260-265, 2000. 【59】 邱建,“延遲裂紋的產生機理與防止措施,”, Science & Technology Information,No. 36,第78頁,民國97年。 【60】 P.A. Kammer, K. Masubuchi, and R.E. Monroe: Defense Metals Information Center, DMIC Report 197, Feb. 1964. 【61】 B. Hemsworth, T. Boniszewski, and N.F. Eation: Metal Const. Br.Weld. J., Vol. 2, pp. 5-16, 1969. 【62】 鄭依洛,“銲道破裂與防止(一)-高溫破裂,”,銲接與切割,第3卷,第1期,第51-56頁,民國82年。 【63】 S. Kou, Welding Metallurgy, ed. 2, John Wiley & sons, Inc., U.S.A, pp. 410-412, 1987. 【64】 Michael J. Cieslak, Metals handbook, American Society for Metals, Vol.6, pp. 241-245, 1993. 【65】 江家慶、王星豪,“銲接熱裂縫之理論及機制,”,銲接與切割,第10卷,第2期,第41-51頁,民國89年。 【66】 Senda T, Matsuda F. Takano G, “Studies on solidification crack susceptibility for weld metals with trans-varestraint test, ” J Japan Weld Soc, Vol. 42, pp. 48–56, 1973. 【67】 Michael J. Cieslak, Metals handbook, American Society for Metals, Vol.6, pp. 229-238, 1993. 【68】 鄭依洛,“銲道破裂與防止(二)-高溫破裂,”,銲接與切割,第4卷,第1期,第42-54頁,民國83年。 【69】 A. Scotti, L. A. A. Rosa, “Influence on ocilation parameters of crack formation in Fe-B hardfacing, ” Journal of Materials Processing Technology, Vol. 65, pp. 272-280, 1997. 【70】 V. E. Buchanan, “Solidification and microstructural characterization of iron–chromium based hardfaced coatings deposited by SMAW and electric arc spraying, ” Surface & Coatings Technology, Vol. 203, pp. 3638-3646, 2009. 【71】 J. N. Aoh, J. C. Chen, “On the wear characteristics of cobalt-based hardfacing layer after thermal fatigue and oxidation, ” Wear, Vol. 250, pp. 611-620, 2001. 【72】 A. LeSko and E. Navara, “Microstructural characterization of high-carbon ferrochromium, ” Materials Characterization, Vol. 36, pp. 349-356, 1996. 【73】 Q.-X. Yang, M. Yao, and J.-K. Park, “Numerical simulations and measurements of temperature and stress field in medium-high carbon steel specimen after hard-face-welding, ” Computational Materials Science, Vol.29, pp. 37-42, 2004. 【74】 S. Kou, Welding Metallurgy, ed. 2, John Wiley & sons, Inc., U.S.A, pp. 45-47, 1987. 【75】 S. Kou, Welding Metallurgy, ed. 2, John Wiley & sons, Inc., U.S.A, pp. 107-109, 1987. 【76】 Y.L. Xu, Z.B. Dong, Y.H. Wei, and C.L. Yang, “Marangoni convection and weld shape variation in A-TIG welding process, ” Theoretical and Applied Fracture Mechanics, Vol. 48, pp. 178-186, 2007. 【77】 R. Kejzar and J. Grum, “Hardfacing of wear-resistant deposits by mag welding with a flux-cored wire having graphite in its filling, ” Material and Manufacturing Process, Vol. 20, pp. 961-976, 2005. 【78】 G. V. Raynor and V. G.. Rivlin, Phase equilibria in iron ternary alloys, The insititute of metals, the math press, UK, p. 143, 1988. 【79】 J. Asensio, J.A. Pero-Sanz, J.I. Verdeja, “Microstructure selection criteria for cast irons with more than 10 wt.% chromium for wear applications, ” Materials Characterization, Vol. 49, pp. 83-93, 2003.
摘要: 
本研究探討添加不同助銲劑對高碳鉻基硬面合金之特性影響。利用鎢極惰性氣體遮護電弧銲接法(Gas Tungsten Arc Welding, GTAW),以【35(wt%)CrC+65(wt%)Cr】為基本合金填料設計,將合金填料銲覆於低碳鋼基材表面。添加助銲劑改善裂紋研究方面,選用松香、無水硼砂、螢石做為助銲劑進行研究,其合金填料設計固定35(wt%) CrC之比例,添加不同含量的單一助銲劑,爾後銲覆於低碳鋼基材表面。觀察各組銲覆層裂紋之情況,並藉由光學顯微鏡觀察及X-ray繞射分析銲覆層之顯微結構,探討裂紋與顯微結構之關係。
實驗結果顯示,隨著添加各種不同種類、含量之助銲劑,並沒有發現其它析出相結構的產生,各組試片相組成以Cr-Fe固溶體(α)、(Cr,Fe)7C3型碳化物以及少量(Cr,Fe)23C6型碳化物。顯微組織分析探討,無添加助銲劑組別、添加松香助銲劑、添加螢石助銲劑組別以初晶(Cr,Fe)7C3碳化物與Cr-Fe(α)/(Cr,Fe)7C3碳化物共晶相結構組成;添加無水硼砂助銲劑以初晶(Cr,Fe)7C3碳化物與Cr-Fe(α)/ (Cr,Fe)23C6碳化物共晶相結構組成。
銲覆層巨觀裂紋觀察結果顯示,無添加助銲劑組別其裂紋情況嚴重,單位面積裂紋長度高達9.62cm;而添加不同助銲劑進行裂紋改善之結果,以添加無水硼砂助銲劑其效果最為顯著,單位面積裂紋長度降低至1.6cm以下;添加松香助銲劑組別其裂紋情況並無改善,單位面積裂紋長度高達11.2cm;而添加螢石助銲劑組別其裂紋情況稍有改善,單位面積裂紋長度降低至3cm左右,但其銲覆層表面卻有剝落之現象。
顯微結構與裂紋觀察結果,裂紋容易在高面積分率初晶碳化物分佈區域、或初晶碳化物與共晶組織不均勻分佈區域產生。裂紋主要都是發生在銲覆層中,且容易沿著初晶碳化物與共晶組織之間的界面傳播,呈現沿晶裂紋型態。
URI: http://hdl.handle.net/11455/10974
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.