Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11015
標題: 氧含量對鎳鐵/氧化鐵奈米雙層薄膜結構及磁性之影響
Effect of Oxygen Contents on Structures and Magnetic Properties of NiFe/Fe-oxide Bilayers
作者: 柯沛杭
Ko, Pei-Hang
關鍵字: ion-beam technique;離子束濺鍍;exchange coupling;exchange bias;Fe-oxide;交換耦合;交換偏壓;氧化鐵
出版社: 材料工程學系所
引用: [1] W. P. Meiklejohn, C. P. Bean, Phys. Rev., 102, 1413 (1956). [2] A. E. Berkowitz, Kentaro Takano, J. Magn. Magn. Mater., 200, 552 (1999). [3] David Jiles, “Introduction to magnetism and magnetic materials”, Chapman & Hall. [4] 金重勳主編,“磁性技術手冊”, 中華民國磁性技術協會。 [5] W. P. Meiklejohn, J. Appl. Phys., 33, 1328 (1962). [6] L. Neel, Ann Phys., 2, 61 (1967). [7] D. Mauri, H. C. Siegmann, J. Appl. Phys., 82, 3047 (1987). [8] A. P. Malozemoff, Phys. Rev. B., 35, 3679 (1987). [9] N. C. Koon, Phys. Rev. Lett., 78, 4865 (1997). [10] T. C. Schulthess and W. H. Butler, Phys. Rev. Lett., 81, 4516 (1998). [11] Stiles M. D., McMichael R. D., Phys. Rev. B., 59, 3722 (1999). [12] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau and F. Pctroff, Phys. Rev. Lett., 61, 2472 (1998). [13] B. Dieny, V. S. Speriosu, S. S. P. Parkung, B.A. Gurney, D. R. Wilhoit, and D. Mauri, Phys. Rev., 43, 1297 (1991). [14] Moodera J. S., Kinder L. R., Phys. Rev. Lett., 74, 3273 (1995). [15] J. Nogu’es, Ivan K. Schuller, J. Magn. Magn. Mater., 192, 203 (1999). [16] E. M. Levin et al., “Phase Diagram for Ceramists”, Amer. Cer. Soc.,1964 [17] R. C. Weast, ”Handbook of Chemistry and Physics”, CRC Press, Inc 1986. [18] T. C. Anthony, J. Brug, and S. Zhang, IEEE Trans. Magn., 30, 3818 (1994). [19] A. E. Berkowitz and K. Takono, J. Magn. Magn. Mater., 200, 552 (1999). [20] Lederman D., Nogues J., Phys. Rev. B. 56(5), 2332 (1997). [21] V. RAGHAVAN, “Phase Diagrams of Ternary iron alloys Part 5 Ternary systems containing iron and oxygen”. [22] G. Rollmann, A. Rohrbach, Phys. Rev. B. 69, 165107 (2004). [23] C. H. Lai, P. H. Huang., J. Appl. Phys., 95, 7222 (2004). [24] B. D. Cullitu and S. R. Stock, “Element of X-Ray Diffraction“. [25] William C. Cain, William H. Meiklejohn, J. Appl. Phys., 61, 4170 (1987). [26] S. F. Cheng, J.P. Teter, J. Appl. Phys., 79, 6234 (1996). [27] C. M. Park, K. L. Min, K. H. Shin, J. Appl. Phys., 79, 6268 (1996). [28] 李正中,“薄膜光學與鍍膜技術”,藝軒圖書出版社,2001。 [29] J. J.Cuomo and S. M. Rossnagel, H. R. Kaufman, “Handbook of ion beam processing technology:principles, deposition, film modification , and synthesis”, Noyes Publication, 1989 [30] H. R. Kaufman, R. S. Robinson, “End Hall Ion Source”, J. Vac. Sci. Technol. A, 5(3), 2081 (1987). [31] C. Weissmantle, “Ion Beam Deposition of Special Film Structure”, Vac. Sci. Technol., 18, 179 (1989). [32] J. J. Cuomo, S. M. Rossnagel, “Handbook of Ion Beam Processing Technology”, Noyes publications, 194 (1989). [33] B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction”, Prentice-Hall, Inc., (2001). [34] Bruce M. Moskowitz, Hitchhiker’s Guide to Magnetism, p16. [35] Ho-kwang Mao, Jinfu Shu, Physics of the earth and Planetary Interiors, 96, 135 (1996). [36] William C. Cain, William H. Meiklejohn, J. Appl. Phys., 61, 4170 (1987). [37] Bruce M. Moskowitz, Hitchhiker’s Guide to Magnetism, p15. [38] C. H. Lai, P. H. Huang, J. Appl. Phys., 95, 7222 (2004). [39] 汪健民主編,“材料分析”,中國材料科學學會,1998。 [40] David B. Williams and C. Barry Carter, ”Transmission Electron Microscopy”, Plenum Press, (1996). [41] Silicon-MDT Ltd. [42] AFM Operation Manual. [43] David Jiles, ”Magnetism and Magnetic Materials” , Chapman & Hall, (1991). [44] J. Claudon, F. Balestro, F.W. J. Hekking, and O. Buisson, Phys Rev. Lett. 93, 187003 (2004). [45] N. Fujimaki, H. Tamura, T. Imamura, and S. Hasuo, IEEE transactionson electron device, 35, 2412 (1988). [46] K. W. Lin, PhD. Thesis, State University of New York at Stony Brook, (2002). [47] S. F. Chen, J. P. Teter, J. Appl.Phys., 79, 6234 (1996). [48] C. M. Park. K. L. Min, K. H. Shin, 79, 6228(1996). [49 Y. J. Kim, Y. Gao, Surface. Sci., 371, 358 (1997). [50] A. H. Morrish, The Physical Principles of Magnetism, IEEE Press, New York, (2001). [51] R. C. O''Handley, Modern Magnetic Materials – Principles and Applications, John Wiley & Sons Inc., New York, (2000). [52] W. C. Cain, W. H. Meiklejohn and M. H. Kryder, J. Appl. Phys., 61, 4170 (1987). [53] Seongtae Bae, Jack H. Judy, J. Appl. Phys. 87, 6650 (2000). [54] 林福泰,“離子束濺鍍鎳鐵/氧化鈷薄膜之結構及磁性研究”碩士論文,2004。 [55] 郭仲儀, “氧含量對鎳鐵/氧化鐵奈米雙層薄膜之結構及磁性研究”碩士論文,2005。 [56] van Lierop, K.-W. Lin, J. Appl. Phys., 99, 104691 (2006).
摘要: 
本研究利用雙離子束濺鍍系統製備鎳鐵/氧化鐵[Ni80Fe20 (25nm)/Fe-oxide (35nm)]雙層薄膜。藉通入氧氣、氬氣混合氣體之輔助離子束,分別製備不同氧含量之氧化鐵薄膜。磁性分析顯示:(鐵磁/反鐵磁α-Fe2O3相)較(鐵磁/亞鐵磁Fe3O4相)有較強之交換耦合作用。鎳鐵/氧化鐵(35%O2)雙層薄膜之交換偏壓場溫度相依性[Hex(T)]可由(1-T/Tcrit)所描述;且其矯頑磁力溫度相依性[HC(T)]則隨溫度範圍有不同的交換耦合機制。

磁電傳輸性質顯示:鎳鐵/氧化鐵雙層薄膜具有異方性磁電阻(AMR)性質。當T=77K時,鎳鐵/氧化鐵(35%O2)雙層薄膜具有最大之磁電阻值(7.3%)。

We have investigated the structural and magnetic properties of ion-beam deposited polycrystalline Ni80Fe20 (25 nm)/Fe-oxide (35 nm) bilayers. The pure antiferromagnetic phases work better than ferrimagnetic phases when in contact with ferromagnetic NiFe. Hex (T) is well described by an effective AF domain wall energy that creates an exchange field with a (1-T/Tcrit) temperature dependence. Hc(T) exhibits three distinct regimes of constant temperature that may indicate the existence of different AF spin populations that couple to the FM layer at different temperatures.
Magnetotransport properties results have shown that the NiFe/Fe-oxide bilayer systems exhibit anisotropic magnetoresistance (AMR) behavior. The NiFe/Fe-oxide (35%O2) bilayer has the largest MR ratio (7.3%) among all samples at 77K.
URI: http://hdl.handle.net/11455/11015
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.