Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11029
DC FieldValueLanguage
dc.contributor劉嘉吉zh_TW
dc.contributor何永鈞zh_TW
dc.contributor鄭名山zh_TW
dc.contributor.advisor張立信zh_TW
dc.contributor.author林志忠zh_TW
dc.contributor.authorLin, Chi-Chongen_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-06T06:46:50Z-
dc.date.available2014-06-06T06:46:50Z-
dc.identifier.citation1.T. J. Seebeck, Abhandlungen der Deutschen Akademie der Wissenchaften zu berlin (1822) p.265 2.E.A. Skrabek, J. W. McGrew, in space Nuclear Power Systems, Orbit Book Co (1988) p.905 3.B. C. Sales, Encyclopedia of Materials (2001) p.9179 4.黃志誠,張學明,能源報導,第89卷,2004,第14-16頁 5.T. M. Tritt, M. A. Subramanian Mater. Res. Bull 31 (2006) p.188 6.K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, Science 303 (2004) p.818 7.H. J. Goldsmid, semiconductors and semimetals, 69, (2001) p.3 8.D. P. Daniel, “Thermoelectric Phenomena CRC Handbook of Thermoelectrics,” CRC Press (1995) p.8 9.J. C. Peltier, Ann. Chim. (1834) p.371 10.朱旭山,電子與材料雜誌,第22期,2005,第78-89頁 11.W. Thomson, Philos. Trans. R. Soc., 146, (1856) pp.649 12.M. M. Ibrahim, N. Afify, M. M. Hafiz, M. A. Mahmoud, Phys. Chem. Solids. 51 (1990) p.51 13.E. Koukharenko, N. frety, V. G. Shepelevich, J. C. Tedenac, J.Alloys Comp. 327 (2001) p.1 14.O. B. Sokolov, S. Ya. Skipidarov, N. I. Duvankov, G. G. Shabunina, J. Crystal Growth. 262 (2004) p.442 15.Z. S. Tan, W. A. Jesser, F. D. Rosi, Mat Sci Eng. B33 (1995) p.195 16.J. L. Liu, K. L. Wang, C. D. Moore, M. S. Goorsky, T. Borca-Tasciuc, G. Chen, Thin Solid Films 369 (2000) p.121 17.Z. H. Dughaish, Physica B 322 (2002) p.205 18.S. D. Daniel , E. Q. Mahanti, K. R. Pcionek, M. G. Kanatzidis, Phys. Rev. Lett. 93 (2004) p.256 19.E. K. Polychroniadis, K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, M. G. Kanatzidis, J. Am. Chem. Soc. 127 (2005) p.9177 20.V. L. Cardetta, A. M. Mancini, Rizzo, J Cryst Growth. 16 (1972) p.183 21.A. Kosuga, K. Kurosaki, M. Uno, S. Yamanaka, J. Alloys Compd. 386 (2005) p.315 22.A. Kosuga, K. Kurosaki, H. Muta, S. Yamanaka, International Conference on Thermoelectric (2005) p.45 23.A. Kosuga, M. Uno, K. Kurosaki, S. Yamanaka, J. Alloys Compd. 387 (2005) p.52 24.A. Kosuga, M. Uno, K. Kurosaki, S. Yamanaka, J. Alloys Compd. 391 (2005) p.288 25.汪建民,陶瓷技術手冊(上),中華民國粉末冶金協會出版,1998,第94-96頁 26.蘇英源,郭金國,粉末冶金學,全華科技圖書股份有限公司,2001,第61-65頁 27.T. C. Harman, D. L. Spears, M. J. Manfra, J. Electron Mater. 25 (1996) p.1121 28.H. Beyer., Appl. Phys. Lett. 80 (2002) p.1216 29.丁南宏,方宏聲,方振洲,真空技術與應用,國科會精儀中心, 2001,第409-416頁 30.李輝煌,田口方法-品質設計的原理與實務,高立圖書,2000,第85-119頁 31.田口玄一著,陳耀茂譯,田口統計解析法,五南圖書,2003,第145-166頁 32.汪建民,材料分析,中國材料學會,1998,第121-149頁 33.張凱祺,「以真空熔煉法製備p型FeSi2-xAlx之相變化及熱電性質之研究」,碩士論文,國立中興大學材料工程研究所,2005,第27-29頁zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/11029-
dc.description.abstract本研究是利用真空熔煉法搭配搖擺爐,藉由改變熔煉時間及降溫時間來製備AgPb18SbTe20熱電合金塊材,探討改變不同的熔煉時間與降溫時間對AgPb18SbTe20之熱電性質、顯微結構及成分的影響。 由熱電性質量測的結果,發現導電率最佳值出現在熔煉時間14小時、降溫時間40小時的試片,其值為4.95× 10² (Ω-cm)¯¹。其導電率與基底中的Ag含量有關,當Ag含量越高時,導電率隨之增加。Seebeck 係數最佳值出現在熔煉時間14小時、降溫時間80小時的試片,其值為268 (μV/K)。當半導體相的摻雜量濃度上升,會使得Seebeck 係數上升。熱導度最佳值出現在熔煉時間14小時、降溫時間40小時的試片,其值為1.58 (W/K.m)。在顯微結構方面,晶體結構主要為PbTe相。隨著熔煉時間與降溫時間的不同,會有析出相的產生。而析出相與基底的Ag和Sb摻雜原子的多寡為主要改變熱電性質優劣的原因。本研究之最佳熱電性質之條件為在熔煉時間14小時、降溫時間40小時,其熱電優值為0.056。zh_TW
dc.description.abstractIn this study, the Ag18PbSbTe20 thermoelectric alloy was prepared for various smelting time and various cooling time by using vibration vacuum smelting. The effects of smelting time and cooling time on thermoelectric properties, microstructures and compositions of the AgPb18SbTe20 alloy were studies. The results of thermoelectric properties show that the optimal electrical conductivity is 4.95× 10² (Ω-cm)¯¹ for specimens smelted 14 hours and cooled from 850℃ to 450℃ for 40 hours. The electrical conductivity increase with the amount of Ag increasing in matrix. The optimal Seebeck coefficient is 268 (μV/K) for specimens smelted for 14 hours and cooled for 80 hours. As the amount of impurities in the semiconductive PbTe phase increases, the Seebeck coefficient increases. The lowest of thermal conductivity is 1.58 (W/K•m) for specimen smelted for 14 hours and cooled for 40 hours. In the microstructural aspect, the major phase of AgPb18SbTe20 is PbTe phase. Precipitates at some conditions. The amount of doping Ag and Sb atom in the precipitates and matrix affects the thermoelectric properties of AgPb18SbTe20 alloy greatly. The optimum parameters of AgPb18SbTe20 alloy by smelting are smelting time of 14 hours and cooling time of 40 hours at this condition that the best figure of merit is 0.056.en_US
dc.description.tableofcontents摘要.....................................................Ⅰ Abstract.................................................Ⅱ 目錄.....................................................Ⅲ 表目錄...................................................Ⅴ 圖目錄...................................................Ⅵ 第一章 緒論...............................................1 1.1 前言..................................................1 1.2 實驗目的..............................................3 第二章 理論基礎...........................................5 2.1熱電現象...............................................5 2.1.1 Seebeck 效應........................................5 2.1.2 Peltier 效應........................................7 2.1.3 Thomson 效應........................................8 2.2 熱電性質..............................................9 2.2.1 電阻率..............................................9 2.2.2 Seebeck 係數.......................................10 2.2.3 熱導度.............................................10 2.3 AgPbmSbTem+2熱電材料之介紹...........................11 2.4田口法式品質方法介紹..................................14 第三章 實驗方法與步驟....................................16 3.1實驗規劃..............................................16 3.2材料準備..............................................18 3.3真空封管..............................................18 3.4搖擺熔煉AgPb18SbTe20熱電合金..........................19 3.5結構與成分分析........................................21 3.5.1 X光繞射儀..........................................21 3.5.2 場發射掃瞄式電子顯微鏡.............................22 3.5.3 場發射電子微探分析儀...............................23 3.6熱電性質量測..........................................24 3.6.1電阻率量測..........................................24 3.6.2 Seebeck係數量測....................................24 3.6.2 熱導度量測.........................................26 第四章 實驗結果與討論....................................28 4.1 AgPb18SbTe20合金之熱電性質量測.......................28 4.2以田口法計算實驗參數之影響............................30 4.3固定降溫時間40小時,不同熔煉時間之影響................34 4.3.1 AgPb18SbTe20熱電材料之顯微結構.....................34 4.3.2 導電率之討論.......................................40 4.3.2 Seebeck係數之討論..................................42 4.3.3 熱導度之討論.......................................44 4.4固定熔煉時間14小時,不同降溫時間之影響................46 4.3.1 AgPb18SbTe20熱電材料之顯微結構.....................46 4.3.2 導電率之討論.......................................52 4.3.2 Seebeck係數之討論..................................54 4.3.3 熱導度之討論.......................................56 4.5熔煉時間與降溫時間之綜合影響..........................58 第五章 結論..............................................60 參考文獻................................................61zh_TW
dc.language.isoen_USzh_TW
dc.publisher材料工程學系所zh_TW
dc.subjectAgPb18SbTe20en_US
dc.subjectAgPb18SbTe20zh_TW
dc.subjectthermoelectric materialen_US
dc.subjectvacuum smeltingen_US
dc.subjectFigure of meriten_US
dc.subject熱電材料zh_TW
dc.subject真空熔煉zh_TW
dc.subject熱電優值zh_TW
dc.title真空熔煉法之製程時間對AgPbmSbTem+2熱電材料特性之影響zh_TW
dc.titleEffect of processing time on thermoelectric properties of AgPbmSbTem+2 alloy by vacuum smeltingen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:材料科學與工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.