Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/11046
標題: 石英基板上研究鍺鉑底層對於鐵鉑薄膜磁性與微結構之影響
Magnetic Properties and Microstructure Studies of FePt Thin Films with GePt Underlayer on Quartz
作者: 許嘉仁
Hsu, Chia-Jen
關鍵字: FePt;鐵鉑;GePt;magnetic;island-like;鍺鉑;磁性;島狀結構
出版社: 材料工程學系所
引用: [1] Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Willson, G. Spanos, B. T. Jonker, Science, vol 95, 25, January 2002. [2] R. Goswami, G. Kioseoglou, A. T. Hanbicki, O. M. J. van’t Erve, B. T. Jonker, and G. Spanos. Appl. Phys. Lett. 86, 032509, 2005. [3] P. Villas, L. D. Calvert, “Binary Alloy Phase Diagrams”, vol 1, American Society For Metals, second printing, 1987. [4] G.Borelius: J. Inst. Met. 74, p17, 1948. [5] G. C. Kuczynski, R. F. Hochman, J. Appl. Phys. 26, 871, 1955. [6] M.Hirabayashi, Acta Met. 10, p25, 1962. [7] Y. K. Takahashi, K. Hono, Scripta Materialia, 53, 403-409, 2005. [8] Cullity, “Introduction to magnetic materials”, Addision-Wesley publishing Company, p.332, 1972. [9] G. C. Hadjipanayais, J. Appl. Phys. 63, 965, 1976. [10] 楊希文,張炎輝,鐵鉑基合金結構及其磁性探討,國立成功大學 博士論文,中華民國八十二年七月。 [11] B. M.Lairson, M. R. Visokay, R. Sinclair, and B. M. Clemens, Appl. Phys. Lett. 62, 639, 1993. [12] M. Watanabe, T. Nakayama, K. Watanabe, IEEE. Trans, J. Magnetics in Japan. 8, 875, 1993. [13] M. Watanabe, Jpn. J. Appl. Phys. 35, 1264, 1996. [14] R.F. Sabiyanov, S. S. Jaswal, J. Magn. Magn. Mater. 117~181, 989, 1998 [15] M. H. Hong and M. Watanabe, J. Appl. Phys., 84, 4403, 1998. [16] C. M. Kuo, P. C. Kuo, H. C. Wu, J. Appl. Phys. 85, 2246, 1999. [17] C. M. Kuo, P. C. Kuo, H. C. Wu, Y. D. Yao, and C. H. Lin, J. Appl. Phys. 85, 4886, 1999. [18] T. Suzuki, Y. Endo, and Y. Shimada, J. Magn. Magn. Mat., 193, 85, 1999. [19] T. Suzuki, N. Kikuchi, and I. Okamoto, J. Appl. Phys., 85, 4301, 1999. [20] T. Goto, Y. Ide, J. Magn. Magn. Mater. 198-199, 486, 1996. [21] Y. Liu, J. P. Liu, D. J. Sellmyer, Nano. Mater. 12, 1027, 1999. [22] M. Abid, H. Lassri, R. Krishnan, J. Magn. Mater., 214, 99, 2000. [23] C. M. Kuo, P. C. Kuo, J. Magn. Magn. Mater. 209, 100, 2000. [24] Seong. Rae Lee, Appl. Phys. Lett., 78, 4001, 2001. [25] Toshio Suzuki, Kiko Harada, Naoki Honda, and Kuzuhiro Ouchi, J. Magn. Magn. Mater. 193, 85, 1999. [26] Toshio Suzuki, and Kuzuhiro Ouchi, IEEE Trans. Magn. 37, 1283, 2001. [27] Z. G. Zhang, K. Kang, and T. Suzuki, Appl. Phys. Lett. 83, 1785, 2003. [28] K. Kang, Z. G. Zhang, T. Suzuki, and C. Papusoi, J. Appl. Phys. 95, 7273, 2003. [29] Takao Suzuki, Zhengang Zhang, Amarendra K. Singh, Jinhua Yin, Alagarsamy Perumal, and Hiroshi Osawa, IEEE Trans. Magn. 41, 555,2005. [30] Y. N. Hsu, S. Jeong, and D. E. Laughlin, J. Appl. Phys. 89, 7068, 2001. [31] Yingfan Xu, J. S. Chen, and J. P. Wang, Appl. Phys. Lett. 80, 3325, 2002. [32] J. S. Chen, B. C. Lim, and J. P. Wang, Appl. Phys Lett. 81, 1848, 2002. [33] Z. L. Zhao, J. P. Wang, J. S. Chen, and J. Ding, Appl. Phys. Lett. 81, 3612, 2002. [34] 袁輔德,陳士堃,銅與金之頂層擴散對鐵鉑薄膜磁性質及微結構之影響,逢甲大學材料科學研究所博士論文,中華民國九十四年六月。 [35] J. L. Tsai, F. T. Yuan, and S. K. Chen, J. Appl. Phys. 97, 10N122, 2005. [36] 孫安正,郭博成,黃暉理,許仁華,低序化溫度L10 FePt合金薄膜的製備及其應用於垂直磁記錄媒體之研究,國立台灣大學材料科學與工程學研究所博士論文,中華民國九十四年六月。 [37] A. C. Sun, P. C. Kuo, J. H. Hsu, H. L. Huang, J. M. Sun, J. Appl. Phys. 98, 073704, 2005. [38] C. H. Lai, C. H. Yang, C. C. Chiang, T. Balaji, and T. K. Tseng, Appl. Phys. Lett. 85, 4430, 2004. [39] S.C. Chen, P. C. Kuo, S. T. Kuo, A. C. Sun, C. Y. Chou, Y. H. Fang, IEEE Trans. Magn. 41, 915-917, 2005. [40] Y. F. ding, J. S. Chen, E. Liu, Appl. Phys. A. 81, 1485-1490, 2005. [41] Yun Zhu and J. W. Cai, Appl. Phys. Lett. 87, 032504, 2005. [42] S. M. Rossnagel et al.“Handbook of plasma processing technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A., (1980), Chap 3. [43] Brian Campman,“Plasma”, Glow Discharge Process, (John Wiley & Sons, New York, U.S.A., (1980), Chap3. [44] 林光隆, 國立成功大學 材料科學及工程學系, “材料表面工程講義”, Chap 7, 2001. [45] L. John Vossen and Werner Kerm, “Thin Film Process”, Academic Process, pp. 134, 1999. [46] R. F. Bunshah, “Deposition Technologies for Films and Coatings”, Noyes Publications, Park Ridge, New Jersey, U.S.A., 1982. [47] J. Venables,“Nucleation and Growth of Thin Films”, Rep. Prog. Phys., 47, 399, 1984. [54] Kiyoshi Watanabe, Hakaru Masumoto,JIM.26,362,1985 [48] 吳政杰,李世欽,ZnO-ITO導電薄膜之研究,國立成功大學碩士論文,中華民國九十三年六月。 [49] 郭建宏,吳仲卿,奈米環狀鎳鐵膜之製作與分析,國立彰化師範大學物理研究所碩士論文,中華民國九十年六月。 [50] 汪建民,材料分析,中國材料科學學會,中華民國九十四年三月。 [52] Z. L. Zhao, J. S. Chen, J. Ding, J. B. Yi, B. H. Liu, and J. P. Wang, Appl. Phys. Lett. 88, 052503, 2006. [53] J. P. Attane, Y. Samson, A. Marty, D. Halley, and C. Beigne, Appl. Phys. Lett. 79, 794, 2001. [54] M. G. Kim, S. C. Shin, Appl. Phys. Lett 80, 3802, 2002. [55] Hari Singh Nalwa, “Magnetic Nanostructures”. California, USA. [56] E. P. Wohlfarth, J. Appl. Phys. 29, 595, 1958. [57] T. Seki, T. Shima, K. Takanashi, Y. Takahashi, and E. Matsubara, K. Hono. Appl. Phys. Lett. 82, 2461, 2003. [58] T.Seki, T. Shima, K. Takanashi, Y. Takahashi, and E. Matsubara, Y. K. Takahashi, K. Hono, J. Appl. Phys., 96, 1127, 2004. [59] J. S. Chen, Yingfan Xu, and J. P. Wang, J. Appl. Phys., 93, 1661, 2003.
摘要: 
本實驗以射頻(RF)磁控濺鍍法製備FePt合金薄膜及(Ge、GePt、Pt/FePt) 雙層膜於石英基板上,並藉由膜厚與熱處理溫度的改變,探討其磁性及微結構之變化。
FePt薄膜在膜厚60nm左右及熱處理400℃下擁有最佳之磁性值,且由δM量測發現晶粒間有很強之耦合。由微結構上觀察發現其晶粒大小約30-40 nm之間並且有微雙晶的出現,隨著退火溫度增加到800℃,其晶粒應增加至150-200 nm之間。顯示FePt高矯頑磁力來自於序化度的增加。
在(Ge/FePt) 雙層膜中,由於Ge在雙層膜退火溫度達400℃時,其磁性表現出軟磁的特徵,這是因為Ge擴散進入FePt的晶格之中破壞FePt之序化,故選擇穩定相底層是重要的。
在(Ge2Pt3/FePt) 雙層膜中,底層熱處理溫度達800℃時,厚度在20nm時,有助於Ge2Pt3形成穩定相並且形成島狀之結構。對於FePt的矯頑磁力的提升有著顯著的成效,並由磁滯曲線上發現在350℃即有序化之發生,故有降低序化溫度之功效。由δM發現晶粒間隨著底層溫度的增加,其耦合的程度也越小。
在(Ge70.8Pt29.2/FePt) 雙層膜中,對於FePt的矯頑磁力提升也與Ge2Pt3底層有同樣效果,只是增加的程度略低。在雙層膜退火800℃並持溫一小時會出現島狀的結構,同時矯頑磁力也下降到3.6 kOe,由磁力顯微鏡上觀察到島狀結構會形成許多條紋狀的磁區。
在(Pt/FePt) 雙層膜中,底層熱處理溫度從RT~600℃的過程中,矯頑磁力從8.73 kOe~5.8 kOe,且序化度也表現出降低的趨勢。其實驗結果與上述之(GePt/FePt) 雙層膜情況相反。

We fabricated FePt thin films and (Ge、GePt、Pt/FePt) bilayers on the amorphous quartz by RF magnetro sputtering. The magnetic properties and microstructures were discussed by changing the thickness and the annealing temperature of the films.
We found the FePt thin films with 60 nm thickness have excellent magnetic properities at 400℃ anneling temperature and also appeared strongly coupling between the FePt grains from δM. According to microstructures, we found the grain size was about 30-40 nm and appeared the micro-twins. As the annealing temperature up to 800℃, the grain sizes will increase to 150-200 nm.
The GePt/FePt thin films with different deposition temperature of GePt underlayer showed the ordered L10 structure by X-ray diffraction. As the deposition temperature of GePt increased to 800℃, the coercivity of the GePt/FePt thin films increased from 1.1 kOe to 9.1 kOe , which indicated the GePt underlayer would promote the ordered FePt phase formed at higher depositied temperature. The single FePt film with 60nm thickness at 400℃ post-annealed was 6.9 kOe. The interlayer diffusion effect of GePt/FePt thin films will supress the formation of ordered FePt phase when the deposition temperature is 25℃. Otherwise microstructure of the bilayers will be large different,we found that granular structure formed at high deposition temperature.
The thickness effect of Ge2Pt3 underlayers on L10 phase FePt thin films was investigated. The Ge2Pt3 compound was formed during in-situ and post 800℃ for half hour. With Ge2Pt3 underlayers deposited on FePt films, the structures changed from island-like films to continuous films. The coercivity of the bilayers decreased from 13.4 to 2.1 kOe. The ordering parameter (K) also decreased from 0.79 to 0.65. The enhanced thickness suppress the magnetic properties of the bilayers may due to the surface roughness and the formation of continuous films.
In (Pt/FePt) bilayers, magnetic and structural properties of Pt underlayer systems have been studied. As annealing temperature increases, the coercivity Hc and the ordering parameter K of Pt underlayer samples decrease.
URI: http://hdl.handle.net/11455/11046
Appears in Collections:材料科學與工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.